scholarly journals A Comparison of Experimental and Computation Results of Finding Effective Characteristics of Elastic Properties of Polymer Layered Composites from Carbon and Glass Fabrics

2021 ◽  
pp. 88-105
Author(s):  
A. Yu Muyzemnek ◽  
T. N Ivanova ◽  
E. D Kartashova

Anisotropy of mechanical properties of the entire material and each of its layers is characteristic for polymer layered composite materials, as well as the fact that production processes of the composite material and parts from it are often combined in time. In this case, the elastic properties and strength of the material will be different not only in the thickness of the part, but also at each point. All this leads to a complication of the design process, which is due to the need to determine the elastic properties and strength of the polymer layered composite materials, taking into account the structure of the entire material and each of its layers. This work aims at evaluating the existing computational methods of finding effective characteristics of elastic properties by comparing computation results obtained by various methods with each other, as well as with the experimental results related to elastic properties of polymer layered composite materials from carbon and glass fabrics. We estimated the computational methods of finding effective characteristics of the elastic properties of composites based on the experimental results of finding the characteristics of the elastic properties of polymer layered composite materials made of carbon and glass fabrics, differing in density and type of weaving. The experimental values of the effective characteristics of elastic properties were determined as a result of standard tensile tests of laboratory specimens. As a result of the study, it was found that all the considered models and methods give consistent results when calculating the longitudinal modulus of elasticity E 11, the results of calculating shear modulus E 33 and shear moduli G 12 and G 23 are less consistent for all the considered materials. The comparison of the results of the experimental studies and computations showed that the Chamis model and the bridge model are better than other models to predict the values of the longitudinal elastic modulus.

2006 ◽  
Vol 306-308 ◽  
pp. 817-822 ◽  
Author(s):  
Heoung Jae Chun ◽  
H.W. Kim ◽  
Joon Hyung Byun

The purposes of stitching multi-axial warp knitted fabric preform prior to the fabrication of the composite materials by resin-transfer molding technique are to improve the resistance to delamination and to increase the out-of-plane properties of the composite materials for structural integrity. The influence of the through-the-thickness stitching on the elastic properties and behaviors of the multi-axial warp knit fabric composites is studied. An analytical model based on the representative volume is proposed to predict the elastic properties of the stitched multi-axial warp knit fabric composite materials. The fiber volume ratios determined by geometric parameters set by the representative volume and elastic behaviors of the in-situ constituent materials are used for the predictions. The crucial step in the analysis is to correlate the averaged stress states in the constituents by adopting bridging matrix. The predicted results are compared with the experimental results. It is found that the predicted results are in reasonably good agreement with the experimental results.


2019 ◽  
Vol 97 ◽  
pp. 02027
Author(s):  
Tatiana Bobyleva ◽  
Alexey Shamaev

Composite materials consisting of several phases are widely used in modern construction. Numerous experiments have shown that the properties of structurally heterogeneous materials can differ significantly from those of the individual components making up the composition. Besides, rapidly changing coefficients of differential equations describing such composite materials greatly complicate the solution of boundary value problems even with the help of computer calculation methods. Therefore, the homogenization method is used. In this paper the two approaches propose to obtain in explicit analytical form the effective model of the problem of loading a heterogeneous pipe made of layered material, provided that the elastic properties of the material depend only on the distance from the center of the section of the pipe. We point to a method that obviously leads to an analytical result. It follows from the article that it is possible to choose the function that determines the structure of the “winding” in such a way as to obtain the stiffness characteristics of the pipe as close as possible to the desired with fixed mass fractions of the materials used. A similar approach can be applied to the study of creep properties of pipes made of composite materials.


2020 ◽  
pp. 78-84
Author(s):  
N. V Osadchy ◽  
V. A Malyshev ◽  
V. T Shepel

Layered composite materials are characterized by a high transverse anisotropy and low values of relations between the transverse shear modulus and the modulus of longitudinal elasticity. As a result, the behavior of longitudinal displacements and longitudinal normal stresses differs from the linear law, and the behavior of transverse tangential stresses differs from the parabolic law. The paper presents the analysis of the degree of the plate displacement nonlinearity functions depending on its elastic properties and geometric shape. The article considers a 2D square plate deformation problem. In non-dimensional terms, the authors could received a complete and demonstrative solution. A similar 3D problem is more bulky but it has no principle differences. The study of the degree of the longitudinal displacement nonlinearity functions due to elastic properties and the geometric shape of the deformable plate is based on the finite element method. The potential energy of the deformable plate is expressed through a square form of the variables with coefficients that are polynomials of dimensionless parameters such as plate size, ratio of the elasticity and shear moduli, Poisson's modulus. It is shown that the variational principle reduces the problem to the solution of the system of linear equations. As a result, the subareas of linearity and nonlinearity of the plate longitudinal displacements are constructed with an accuracy acceptable for engineering calculations of 5 %. It is necessary to consider the plate nonlinear longitudinal deformations for a length of the composite plate on order more than its thicknesses. As for steel, nonlinearity is characteristic for quite thick plates. The constructed areas of linearity and nonlinearity of the longitudinal displacements make it possible to construct the strain-stress state models with a smaller number of variables.


The article is devoted to the actual problem of assigning optimal parameters for connecting steel plates on cover plates with angular welds that are widely used in construction practice. The article presents the results of a comprehensive study of operation of a welded assembly of the plates connection on cover plates. An algorithm is proposed for determining the optimal parameters of a welded joint with fillet welds on the cover plates, which makes it possible to obtain a strength balanced connection. The results of full-scale tensile tests of models were presented. These results confirmed the correctness of the assumed design assumptions, and made it possible to obtain a form of destruction, not characteristic and not described in the normative literature, expressed by cutting the main elements along the length of the overlap in the joint. The possibility of such a form of destruction was confirmed by the results of numerical research in a nonlinear formulation. The optimal parameters of the nodal welded joint determined by engineering calculation are confirmed by experimental studies, as well as by the results of numerical experiments on models of calculation schemes, taking into account the physical nonlinearity of the material operation. The obtained dependence for determining the bearing capacity of the joint by the cut-off mechanism and the expression for limiting the overlap length of the cover plates will make it possible to predict the nature of the fracture and design equally strong joints.


2020 ◽  
Vol 6 (1) ◽  
pp. 50-56
Author(s):  
Francesco Baino ◽  
Elisa Fiume

AbstractPorosity is known to play a pivotal role in dictating the functional properties of biomedical scaffolds, with special reference to mechanical performance. While compressive strength is relatively easy to be experimentally assessed even for brittle ceramic and glass foams, elastic properties are much more difficult to be reliably estimated. Therefore, describing and, hence, predicting the relationship between porosity and elastic properties based only on the constitutive parameters of the solid material is still a challenge. In this work, we quantitatively compare the predictive capability of a set of different models in describing, over a wide range of porosity, the elastic modulus (7 models), shear modulus (3 models) and Poisson’s ratio (7 models) of bioactive silicate glass-derived scaffolds produced by foam replication. For these types of biomedical materials, the porosity dependence of elastic and shear moduli follows a second-order power-law approximation, whereas the relationship between porosity and Poisson’s ratio is well fitted by a linear equation.


2018 ◽  
Vol 233 ◽  
pp. 00025
Author(s):  
P.V. Polydoropoulou ◽  
K.I. Tserpes ◽  
Sp.G. Pantelakis ◽  
Ch.V. Katsiropoulos

In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 968
Author(s):  
Fumitada Iguchi ◽  
Keisuke Hinata

The elastic properties of 0, 10, 15, and 20 mol% yttrium-doped barium zirconate (BZY0, BZY10, BZY15, and BZY20) at the operating temperatures of protonic ceramic fuel cells were evaluated. The proposed measurement method for low sinterability materials could accurately determine the sonic velocities of small-pellet-type samples, and the elastic properties were determined based on these velocities. The Young’s modulus of BZY10, BZY15, and BZY20 was 224, 218, and 209 GPa at 20 °C, respectively, and the values decreased as the yttrium concentration increased. At high temperatures (>20 °C), as the temperature increased, the Young’s and shear moduli decreased, whereas the bulk modulus and Poisson’s ratio increased. The Young’s and shear moduli varied nonlinearly with the temperature: The values decreased rapidly from 100 to 300 °C and gradually at temperatures beyond 400 °C. The Young’s modulus of BZY10, BZY15, and BZY20 was 137, 159, and 122 GPa at 500 °C, respectively, 30–40% smaller than the values at 20 °C. The influence of the temperature was larger than that of the change in the yttrium concentration.


2010 ◽  
Vol 44 (21) ◽  
pp. 2487-2507 ◽  
Author(s):  
G. Vargas ◽  
F. Mujika

The aim of this work is to compare from an experimental point of view the determination of in-plane shear strength of unidirectional composite materials by means of two off-axis tests: three-point flexure and tensile. In the case of the off-axis three-point flexure test, the condition of small displacements and the condition of lift-off between the specimen and the fixture supports have been taken into account. Some considerations regarding stress and displacement fields are presented. The in-plane shear characterization has been performed on a carbon fiber reinforced unidirectional laminate with several fiber orientation angles: 10°, 20°, 30°, and 45°. Test conditions for both off-axis experimental methods, in order to ensure their applicability, are presented. Off-axis flexure test is considered more suitable than off-axis tensile test for the determination of in-plane shear strength.


Sign in / Sign up

Export Citation Format

Share Document