scholarly journals A three dimensional non-hydrostatic model for turbulent air flow

2000 ◽  
Vol 22 (3) ◽  
pp. 167-180
Author(s):  
Duong Ngoc Hai ◽  
Nguyen The Duc

A finite-volume code is developed to compute the turbulent airflow over small- scale complex terrain. A pressure-correction algorithm is used to solve the three-dimensional non-hydrostatic flow equations. The turbulent transport is simulated by the k- € model using some modifications suitable for atmospheric boundary-layer application. As an example, the model is used to simulate the flow-field around a cubical building. The same flow as a towing-tank experiment of USEPA was simulated using our code. These simulations show that, the model was capable of simulating recirculation zones behind the building. The results of calculation are also compared with available measurement data.

2010 ◽  
Vol 14 (10) ◽  
pp. 1989-2001 ◽  
Author(s):  
H. Murakami ◽  
X. Chen ◽  
M. S. Hahn ◽  
Y. Liu ◽  
M. L. Rockhold ◽  
...  

Abstract. This study presents a stochastic, three-dimensional characterization of a heterogeneous hydraulic conductivity field within the Hanford 300 Area, Washington, USA, by assimilating large-scale, constant-rate injection test data with small-scale, three-dimensional electromagnetic borehole flowmeter (EBF) measurement data. We first inverted the injection test data to estimate the transmissivity field, using zeroth-order temporal moments of pressure buildup curves. We applied a newly developed Bayesian geostatistical inversion framework, the method of anchored distributions (MAD), to obtain a joint posterior distribution of geostatistical parameters and local log-transmissivities at multiple locations. The unique aspects of MAD that make it suitable for this purpose are its ability to integrate multi-scale, multi-type data within a Bayesian framework and to compute a nonparametric posterior distribution. After we combined the distribution of transmissivities with depth-discrete relative-conductivity profile from the EBF data, we inferred the three-dimensional geostatistical parameters of the log-conductivity field, using the Bayesian model-based geostatistics. Such consistent use of the Bayesian approach throughout the procedure enabled us to systematically incorporate data uncertainty into the final posterior distribution. The method was tested in a synthetic study and validated using the actual data that was not part of the estimation. Results showed broader and skewed posterior distributions of geostatistical parameters except for the mean, which suggests the importance of inferring the entire distribution to quantify the parameter uncertainty.


2010 ◽  
Vol 7 (2) ◽  
pp. 2017-2052 ◽  
Author(s):  
H. Murakami ◽  
X. Chen ◽  
M. S. Hahn ◽  
Y. Liu ◽  
M. L. Rockhold ◽  
...  

Abstract. This study presents a stochastic, three-dimensional characterization of a heterogeneous hydraulic conductivity field within DOE's Hanford 300 Area site, Washington, by assimilating large-scale, constant-rate injection test data with small-scale, three-dimensional electromagnetic borehole flowmeter (EBF) measurement data. We first inverted the injection test data to estimate the transmissivity field, using zeroth-order temporal moments of pressure buildup curves. We applied a newly developed Bayesian geostatistical inversion framework, the method of anchored distributions (MAD), to obtain a joint posterior distribution of geostatistical parameters and local log-transmissivities at multiple locations. The unique aspects of MAD that make it suitable for this purpose are its ability to integrate multi-scale, multi-type data within a Bayesian framework and to compute a nonparametric posterior distribution. After we combined the distribution of transmissivities with depth-discrete relative-conductivity profile from the EBF data, we inferred the three-dimensional geostatistical parameters of the log-conductivity field, using the Bayesian model-based geostatistics. Such consistent use of the Bayesian approach throughout the procedure enabled us to systematically incorporate data uncertainty into the final posterior distribution. The method was tested in a synthetic study and validated using the actual data that was not part of the estimation. Results showed broader and skewed posterior distributions of geostatistical parameters except for the mean, which suggests the importance of inferring the entire distribution to quantify the parameter uncertainty.


2018 ◽  
pp. 20-26
Author(s):  
A.M. Abdullayev ◽  
A.I. Zhukov ◽  
S.V. Maryokhin ◽  
S.D. Riabchykov

A method for calculating the engineering margin factor (EMF) in calculations of the energy release in the core of VVER-1000 reactors is proposed in the paper. The analysis of various approaches in the calculation of EMF is carried out and various factors influencing EMF and the ways of their consideration —deterministic and statistical — are determined. The main attention is paid to the influence of gaps between the fuel assemblies on the energy release of fuel rods and the contribution of this factor to the EMF. The limitations and conservatism of two-dimensional small-scale calculations of the energy release of fuel rods in case of deviation of the gap size between the fuel assemblies from the design one are shown. A three-dimensional approach to calculating the contribution of gaps to the EMF is proposed. The approach is based on detailed measurements of the shape of fuel assemblies removed from the core performed at Zaporizhzhya NPP [13]; simulation of the distribution of gaps in the reactor core [16] using measurement data; two-dimensional calculations of the energy release of fuel rods in separate fuel assemblies, surrounded by gaps of different widths, with mirroring boundary conditions; three-dimensional calculations of energy release of fuel rods in fuel assemblies in the reactor core. Two-dimensional and three-dimensional calculations are performed by the wellknown ALPHA-H/PHOENIX-H/ANC-H codes. The proposed approach allows considering not only the change in the fuel rod power, particularly of the peripheral rods, which is inherent in the currently used methods of calculating EMF, but also takes into account the change in the power of the fuel assemblies in the core, which makes the proposed method more realistic and removes the excessive conservatism of EMF calculations and, thereby, allows improving fuel efficiency. For fuel assemblies produced by Westinghouse, it is proposed to use full EMF: for fuel rod power (FΔH) 1.111 and for fuel rod linear power (FQ) 1.173. The use of the BEACONTM monitoring system makes it possible to further reduce the EMF: for fuel rod power (FΔH) - up to 1.084 and for fuel rod linear power (FQ) - up to 1.121.


2018 ◽  
Vol 611 ◽  
pp. A15 ◽  
Author(s):  
M. J. Käpylä ◽  
F. A. Gent ◽  
M. S. Väisälä ◽  
G. R. Sarson

Context.The forcing of interstellar turbulence, driven mainly by supernova (SN) explosions, is irrotational in nature, but the development of significant amounts of vorticity and helicity, accompanied by large-scale dynamo action, has been reported.Aim.Several earlier investigations examined vorticity production in simpler systems; here all the relevant processes can be considered simultaneously. We also investigate the mechanisms for the generation of net helicity and large-scale flow in the system.Methods.We use a three-dimensional, stratified, rotating and shearing local simulation domain of the size 1 × 1 × 2 kpc3, forced with SN explosions occurring at a rate typical of the solar neighbourhood in the Milky Way. In addition to the nominal simulation run with realistic Milky Way parameters, we vary the rotation and shear rates, but keep the absolute value of their ratio fixed. Reversing the sign of shear vs. rotation allows us to separate the rotation- and shear-generated contributions.Results.As in earlier studies, we find the generation of significant amounts of vorticity, the rotational flow comprising on average 65% of the total flow. The vorticity production can be related to the baroclinicity of the flow, especially in the regions of hot, dilute clustered supernova bubbles. In these regions, the vortex stretching acts as a sink of vorticity. In denser, compressed regions, the vortex stretching amplifies vorticity, but remains sub-dominant to baroclinicity. The net helicities produced by rotation and shear are of opposite signs for physically motivated rotation laws, with the solar neighbourhood parameters resulting in the near cancellation of the total net helicity. We also find the excitation of oscillatory mean flows, the strength and oscillation period of which depend on the Coriolis and shear parameters; we interpret these as signatures of the anisotropic-kinetic-α(AKA) effect. We use the method of moments to fit for the turbulent transport coefficients, and findαAKAvalues of the order 3–5 km s−1.Conclusions.Even in a weakly rotationally and shear-influenced system, small-scale anisotropies can lead to significant effects at large scales. Here we report on two consequences of such effects, namely on the generation of net helicity and on the emergence of large-scale flows by the AKA effect, the latter detected for the first time in a direct numerical simulation of a realistic astrophysical system.


2019 ◽  
Vol 24 (42) ◽  
pp. 4991-5008 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad

Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.


Author(s):  
Honglei Xu ◽  
Linhuan Wang

In order to improve the accuracy of dynamic detection of wind field in the three-dimensional display space, system software is carried out on the actual scene and corresponding airborne radar observation information data, and the particle swarm algorithm fuzzy logic algorithm is introduced into the wind field dynamic simulation process in three-dimensional display space, to analyze the error of the filtering result in detail, to process the hurricane Lily Doppler radar measurement data with the optimal adaptive filtering according to the error data. The three-dimensional wind field synchronous measurement data obtained by filtering was compared with three-dimensional wind field synchronous measurement data of the GPS dropsonde in this experiment, the sea surface wind field measurement data of the multi-band microwave radiometer, and the wind field data at aircraft altitude.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Yuhang Yang ◽  
Zhiqiao Dong ◽  
Yuquan Meng ◽  
Chenhui Shao

High-fidelity characterization and effective monitoring of spatial and spatiotemporal processes are crucial for high-performance quality control of many manufacturing processes and systems in the era of smart manufacturing. Although the recent development in measurement technologies has made it possible to acquire high-resolution three-dimensional (3D) surface measurement data, it is generally expensive and time-consuming to use such technologies in real-world production settings. Data-driven approaches that stem from statistics and machine learning can potentially enable intelligent, cost-effective surface measurement and thus allow manufacturers to use high-resolution surface data for better decision-making without introducing substantial production cost induced by data acquisition. Among these methods, spatial and spatiotemporal interpolation techniques can draw inferences about unmeasured locations on a surface using the measurement of other locations, thus decreasing the measurement cost and time. However, interpolation methods are very sensitive to the availability of measurement data, and their performances largely depend on the measurement scheme or the sampling design, i.e., how to allocate measurement efforts. As such, sampling design is considered to be another important field that enables intelligent surface measurement. This paper reviews and summarizes the state-of-the-art research in interpolation and sampling design for surface measurement in varied manufacturing applications. Research gaps and future research directions are also identified and can serve as a fundamental guideline to industrial practitioners and researchers for future studies in these areas.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


Sign in / Sign up

Export Citation Format

Share Document