scholarly journals Application of genome editing tools in plants

2021 ◽  
Vol 19 (1) ◽  
pp. 15-40
Author(s):  
Nguyen Duc Thanh

Genome editing technology is the genome modification techniques, such as targeted mutagenesis or insert/delete/replacement at specific locations in the genome of living organisms. Genome editing is based on the creation of double sequence break (DSB) in a specific location and DNA repair via nonhomologous end joining (NHEJ) or homology direct repair (HDR). The development of sequence-specific nuclease (SSN) allows precise editing of the target gene. These SSNs include: meganuclease (MN), zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and CRISPR-associated nuclease (Cas) including CRISPR/Cas9 (from Streptococcus pyogenes) and CRISPR/Cpf1 (from Prevoltella and Francisella1). These are the genome editing tools used to create DSBs at specific locations of the genome. Recently, the base editing (BE) and prime editing (PE) tools have been reported. This review will cover the basics of these tools and their application in genome editing in plants, especially providing the most up-to-date information on their application in crop improvement.

2019 ◽  
Vol 20 (16) ◽  
pp. 4045 ◽  
Author(s):  
Ali Razzaq ◽  
Fozia Saleem ◽  
Mehak Kanwal ◽  
Ghulam Mustafa ◽  
Sumaira Yousaf ◽  
...  

Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing. In recent years, the CRISPR/Cas9 system has emerged as a powerful tool for targeted mutagenesis, including single base substitution, multiplex gene editing, gene knockouts, and regulation of gene transcription in plants. Thus, CRISPR/Cas9-based genome editing has demonstrated great potential for crop improvement but regulation of genome-edited crops is still in its infancy. Here, we extensively reviewed the availability of CRISPR/Cas9 genome editing tools for plant biotechnologists to target desired genes and its vast applications in crop breeding research.


2021 ◽  
Vol 22 (11) ◽  
pp. 5585
Author(s):  
Sajid Fiaz ◽  
Sunny Ahmar ◽  
Sajjad Saeed ◽  
Aamir Riaz ◽  
Freddy Mora-Poblete ◽  
...  

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


Traditional plant breeding depends on spontaneous and induced mutations available in the crop plants. Such mutations are rare and occur randomly. By contrast, molecular breeding and genome editing are advanced breeding techniques that can enhance the selection process and produce precisely targeted modifications in any crop. Identification of molecular markers, based on SSRs and SNPs, and the availability of high-throughput (HTP) genotyping platforms have accelerated the process of generating dense genetic linkage maps and thereby enhanced application of marker-assisted breeding for crop improvement. Advanced molecular biology techniques that facilitate precise, efficient, and targeted modifications at genomic loci are termed as “genome editing.” The genome editing tools include “zinc-finger nucleases (ZNFs),” “transcription activator-like effector nucleases (TALENs),” oligonucleotide-directed mutagenesis (ODM), and “clustered regularly interspersed short palindromic repeats (CRISPER/Cas) system,” which can be used for targeted gene editing. Concepts of molecular plant breeding and genome editing systems are presented in this chapter.


2020 ◽  
Vol 21 (11) ◽  
pp. 4040 ◽  
Author(s):  
Waquar A. Ansari ◽  
Sonali U. Chandanshive ◽  
Vacha Bhatt ◽  
Altafhusain B. Nadaf ◽  
Sanskriti Vats ◽  
...  

Over the past decades, numerous efforts were made towards the improvement of cereal crops mostly employing traditional or molecular breeding approaches. The current scenario made it possible to efficiently explore molecular understanding by targeting different genes to achieve desirable plants. To provide guaranteed food security for the rising world population particularly under vulnerable climatic condition, development of high yielding stress tolerant crops is needed. In this regard, technologies upgradation in the field of genome editing looks promising. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 is a rapidly growing genome editing technique being effectively applied in different organisms, that includes both model and crop plants. In recent times CRISPR/Cas9 is being considered as a technology which revolutionized fundamental as well as applied research in plant breeding. Genome editing using CRISPR/Cas9 system has been successfully demonstrated in many cereal crops including rice, wheat, maize, and barley. Availability of whole genome sequence information for number of crops along with the advancement in genome-editing techniques provides several possibilities to achieve desirable traits. In this review, the options available for crop improvement by implementing CRISPR/Cas9 based genome-editing techniques with special emphasis on cereal crops have been summarized. Recent advances providing opportunities to simultaneously edit many target genes were also discussed. The review also addressed recent advancements enabling precise base editing and gene expression modifications. In addition, the article also highlighted limitations such as transformation efficiency, specific promoters and most importantly the ethical and regulatory issues related to commercial release of novel crop varieties developed through genome editing.


2017 ◽  
Vol 1 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Joyce Van Eck

Tomato is an effective model plant species because it possesses the qualities necessary for genetic and functional studies, but is also a food crop making what is learned more translatable for crop improvement when compared with other non-food crop models. The availability of genome sequences for many genotypes and amenability to transformation methodologies (Agrobacterium-mediated, direct DNA uptake via protoplasts, biolistics) make tomato the perfect platform to study the application of gene-editing technologies. This review includes information related to tomato transformation methodology, one of the necessary requirements for gene editing, along with the status of site-directed mutagenesis by TALENs (transcription activator-like effector nucleases) and CRISPR/Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated Proteins). In addition to the reports on proof-of-concept experiments to demonstrate the feasibility of gene editing in tomato, there are many reports that show the power of these technologies for modification of traits, such as fruit characteristics (ripening, size, and parthenocarpy), pathogen susceptibility, architecture (plant and inflorescence), and metabolic engineering. Also highlighted in this review are reports on the application of a recent CRISPR technology called base editing that allows the modification of one base pair in a gene sequence and a strategy that takes advantage of a geminivirus replicon for delivery of DNA repair template.


2019 ◽  
Author(s):  
Tien Van Vu ◽  
Velu Sivankalyani ◽  
Eun-Jung Kim ◽  
Duong Thi Hai Doan ◽  
Mil Thi Tran ◽  
...  

ABSTRACTGenome editing via the homology-directed repair (HDR) pathway in somatic plant cells is very inefficient compared to error-prone repair by nonhomologous end joining (NHEJ). Here, we increased HDR-based genome editing efficiency approximately 3-fold compared to a Cas9-based single-replicon system via the use of de novo multi-replicon systems equipped with CRISPR/LbCpf1 in tomato and obtained replicon-free but stable HDR alleles. The efficiency of CRISPR/LbCpf1-based HDR was significantly modulated by physical culture conditions such as temperature and light. Ten days of incubation at 31°C under a light/dark cycle after Agrobacterium-mediated transformation resulted in the best performance among the tested conditions. Furthermore, we developed our single-replicon system into a multi-replicon system that effectively increased HDR efficiency. Although this approach is still challenging, we showed the feasibility of HDR-based genome editing of a salt-tolerant SlHKT1;2 allele without genomic integration of antibiotic markers or any phenotypic selection. Self-pollinated offspring plants carrying the HKT1;2 HDR allele showed stable inheritance and germination tolerance in the presence of 100 mM NaCl. Our work may pave the way for transgene-free editing of alleles of interest in asexually as well as sexually reproducing plants.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mei-Yi Yan ◽  
Si-Shang Li ◽  
Xin-Yuan Ding ◽  
Xiao-Peng Guo ◽  
Qi Jin ◽  
...  

ABSTRACT New tools for genetic manipulation of Mycobacterium tuberculosis are needed for the development of new drug regimens and vaccines aimed at curing tuberculosis infections. Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) systems generate a highly specific double-strand break at the target site that can be repaired via nonhomologous end joining (NHEJ), resulting in the desired genome alteration. In this study, we first improved the NHEJ repair pathway and developed a CRISPR-Cas-mediated genome-editing method that allowed us to generate markerless deletion in Mycobacterium smegmatis, Mycobacterium marinum, and M. tuberculosis. Then, we demonstrated that this system could efficiently achieve simultaneous generation of double mutations and large-scale genetic mutations in M. tuberculosis. Finally, we showed that the strategy we developed can also be used to facilitate genome editing in Escherichia coli. IMPORTANCE The global health impact of M. tuberculosis necessitates the development of new genetic tools for its manipulation, to facilitate the identification and characterization of novel drug targets and vaccine candidates. Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) genome editing has proven to be a powerful genetic tool in various organisms; to date, however, attempts to use this approach in M. tuberculosis have failed. Here, we describe a genome-editing tool based on CRISPR cleavage and the nonhomologous end-joining (NHEJ) repair pathway that can efficiently generate deletion mutants in M. tuberculosis. More importantly, this system can generate simultaneous double mutations and large-scale genetic mutations in this species. We anticipate that this CRISPR-NHEJ-assisted genome-editing system will be broadly useful for research on mycobacteria, vaccine development, and drug target profiling.


2020 ◽  
Vol 21 (16) ◽  
pp. 5665 ◽  
Author(s):  
Sunny Ahmar ◽  
Sumbul Saeed ◽  
Muhammad Hafeez Ullah Khan ◽  
Shahid Ullah Khan ◽  
Freddy Mora-Poblete ◽  
...  

Genome editing is a relevant, versatile, and preferred tool for crop improvement, as well as for functional genomics. In this review, we summarize the advances in gene-editing techniques, such as zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 and Cpf1 proteins. These tools support great opportunities for the future development of plant science and rapid remodeling of crops. Furthermore, we discuss the brief history of each tool and provide their comparison and different applications. Among the various genome-editing tools, CRISPR has become the most popular; hence, it is discussed in the greatest detail. CRISPR has helped clarify the genomic structure and its role in plants: For example, the transcriptional control of Cas9 and Cpf1, genetic locus monitoring, the mechanism and control of promoter activity, and the alteration and detection of epigenetic behavior between single-nucleotide polymorphisms (SNPs) investigated based on genetic traits and related genome-wide studies. The present review describes how CRISPR/Cas9 systems can play a valuable role in the characterization of the genomic rearrangement and plant gene functions, as well as the improvement of the important traits of field crops with the greatest precision. In addition, the speed editing strategy of gene-family members was introduced to accelerate the applications of gene-editing systems to crop improvement. For this, the CRISPR technology has a valuable advantage that particularly holds the scientist’s mind, as it allows genome editing in multiple biological systems.


Targeted editing of the genomes of living organisms not only permits investigations into the understanding of the fundamental basis of biological systems but also allows to improve productively and quality of crops. This includes the creation of plants with valuable compositional properties and with traits that confer resistance to various biotic and abiotic stresses. Recently, several novel genome editing systems have been developed, which include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALNEs), and clustered regularly interspersed short palindromic repeats/Cas9 (CRISPER/Cas9). These exciting new methods have proved themselves as effective and reliable tools for the genetic improvement of plants. The genome editing systems can also be used to exploit the genetic diversity present in the semi-domesticated and wild relatives of the cultivated crops by targeting homologous domesticated genes through allele-mining. In this chapter various tools available for gene editing, their merits, and demerits have been discussed.


Sign in / Sign up

Export Citation Format

Share Document