scholarly journals Production of biogas from cattle waste at low temperature

2019 ◽  
pp. 639-644
Author(s):  
T. Y. Yeole ◽  
N.S. Deshmukh ◽  
K.L. Lapsiya ◽  
D.R. Ranade

Production of Bio gas from cattle waste and other biomass is now considered as one of the majorroutes to obtain gaseous fuel for sustainable development. In tropical countries like Indiathousands of rural families in villages are using 3 to 5 M3 biogas plants to suffice their dailycooking fuel need. All these plants are run on cattle waste. Since these plants are operated atambient temperatures, effect of temperature variation affects daily gas yield. The effect becomesvery prominent during winter season. In general about 50-60% reduction in daily biogas yield isobserved when ambient temperature is around l 5°C as compared to that produced at around 30-350C. A low cost and simple to operate technique to enhance biogas yield from the biogas plantduring winter season shall help to get optimum biogas yield from these plants during the winterseason. We thought of a simple technique of filtering the digested effluent slurry of biogas plantthrough a triple layer muslin cloth to obtain a filtrate, hence-forth called as clarified digestedslurry (CDS), rich in cell mass and then adding it back to the biogas plant along with the influentslurry. Experiments were carried out on 25 L capacity cattle dung biogas plant operated at 15°Cto see effect of recirculation of CDS. Addition of 25 and 40% v/v CDS in daily influent resultedin 15% and 37% increase in daily biogas yield. Recirculation of 40% v/v CDS supplementedwith Diammonium phosphate(DAP) increased the biogas yield by 75% v/v. In anotherexperiment use of clarified rumen fluid (CRF) to prepare influent slurry and added exclusivelyfor one day enhanced the daily biogas yield by 70% v/v for a period of two months. Popular dailywears in India called cotton dhoti or cotton sari can be used for the filtration of the slurry.

2014 ◽  
Vol 493 ◽  
pp. 262-266
Author(s):  
Daniel Nett ◽  
I. Nyoman Suprapta Winaya ◽  
I. Made Agus Putrawan ◽  
Rolf Wartmann ◽  
Werner Edelmann

This research aims to give an overview on how to improve the biogas yeild in Balinese digester plants using various co-substrates which are available in Bali. A series testing on the digestibility of substrates were set up either in the field or in the biogas laboratory. In-field analyses like testing the CO2-content and taking samples from digested manure were undertaken. Analyses such as dry matter (DM) and organic dry matter (oDM) determination, pH measurement and FOS/TAC were handled in the biogas laboratory. The huge number of different fruits in Bali gives a good opportunity to use their wastes like Durian hulls and Banana peelings, which can not be used anymore, as co-substrates in biogas plants. The results of these investigations allow to estimate the additional biogas yield, when adding co-substrates to a cow manure biogas plant.


2022 ◽  
Author(s):  
Irina V. Miroshnichenko ◽  
Nadiia V. Nikulina

To design biogas plants, it is necessary to have accurate data about the properties and biogas productivity of the available substrates. Reference data should not be used because the performance of the same substrate can vary significantly. In this research,chicken, horse, sheep and rabbit manure from one of the farms inthe Belgorod region of Russia were analyzed, and the parameters of a biogas station for the processing of this raw material were calculated.The biogas yield of the substrates was determined using the Hohenheim Biogas Yield Test. It was found that the specific biogas yield from the droppings of broilers, laying hens, rabbits, sheep, and horses, and from corn silage were, respectively, 456, 363, 390, 189, 116 and 618 ml/g оDM. The methane content in the biogas was 58.00, 58.50, 57.00, 62.00, 65.00 and 53.60%, respectively. In most cases, the obtained results differed significantly from the data presented in publications of other researchers and reference books.The biogas plant parameter calculations were made according to generally accepted equations, taking into account the characteristics of the studied substrates. Based on the results, it can be concluded that to dispose of the animal excrement of this farm, it is necessary to build a biogas plant with a bioreactor of volume 102.2 m3 and an engine with a power of 12 to 31 kW. The planned output of electric and thermal energy would be 246.19 and 410.27 kWh/day, respectively. Keywords: Hohenheim Biogas Yield Test, rabbit manure, horse dung, sheep manure, chicken droppings, biogas yield of substrates


A survey was conducted in selected villages of district Patiala for assessment of livelihood security of rural households based on biogas plants. A questionnaire was developed in order to collect information related to farmland holding, biogas plant installed or not, its type, size etc., number of cattle heads, types of fuel used in a kitchen, usage of biogas for kitchen and other purposes. The socio-economic considerations like fuel savings, household income from different sources, cost of living, and use of biogas plant slurry as manure and impacts of biogas plant usage at domestic level in terms of greenhouse gas emission reduction were also noted. Forty five farming households were surveyed in 15 villages of different blocks of the district. It was found that average members in the family were 5 and the average cultivable land was 9.77 acre. The income of the surveyed households was found to vary from `250000 to 2750000. The average annual cost of living of households with and without biogas plants were `167911 and `183520. In addition, there were a total annual savings of `11095 of households having biogas plants, in terms of fuel wood (1380 kg) and LPG cylinders (9) savings. However, no comparative savings were found in using biogas plant slurry as manure compared to dung usage as farmyard manure in fields of surveyed farms, whereas, the farmers prevented the emission of methane (1074 kg) and ammonia (751 kg) from open disposal of cattle dung on average per year in comparison to households without biogas plants.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2424
Author(s):  
Jan Martin Zepter ◽  
Jan Engelhardt ◽  
Tatiana Gabderakhmanova ◽  
Mattia Marinelli

Biogas plants may support the transformation towards renewable-based and integrated energy systems by providing dispatchable co-generation as well as opportunities for biogas upgrading or power-to-X conversion. In this paper, a simulation model that comprises the main dynamics of the internal processes of a biogas plant is developed. Based on first-order kinetics of the anaerobic digestion process, the biogas production of an input feeding schedule of raw material can be estimated. The output of the plant in terms of electrical and thermal energy is validated against empirical data from a 3-MW biogas plant on the Danish island of Bornholm. The results show that the model provides an accurate representation of the processes within a biogas plant. The paper further provides insights on the functioning of the biogas plant on Bornholm as well as discusses upgrading potentials of biogas to biomethane at the plant from an energy perspective.


2021 ◽  
Vol 20 (3) ◽  
pp. 582-612
Author(s):  
G. S. Chebotareva ◽  
◽  
A. A. Dvinayninov ◽  

The main trend in energy development is to increase energy efficiency by reducing the use of limited natural resources, the spread of renewable energy, and reducing the negative impact on the environment. An effective response to these challenges is the use of biogas plants that produce clean energy and solve the environmental problems of waste disposal and recycling. The purpose of the article is to assess the economic efficiency of replacing district gas supply with autonomous biogas plants in public utilities. A hypothesis has been put forward that the feasibility of using such technologies depends on climatic features and the specific provisions of state regulation of prices and gas consumption rates. A cost approach was applied that assesses the overall structure of equipment costs, as well as a comparative assessment method according to the principle “with / without a biogas plant”, and a scenario analysis, the criterion of which is the size of the family owning the plant. An auxiliary method for forecasting retail and economically justified prices for natural gas for the population was used. The object of calculations is the “HomeBiogas” installation intended for home use. Three Russian cities were chosen as territorial subjects: Yekaterinburg, Irkutsk and Krasnodar. The cities which differ significantly in their natural characteristics and approaches to the formation of retail gas prices. It has been proved that although the average monthly temperatures differ significantly in the cities considered, none of them has a constant temperature exceeding the required standard value of 17°C. In each case, the initial capital investment is driven up by the cost of installing additional insulation and heating systems. This equalizes the costs of warmer and colder areas. Therefore, the climatic features of cities are not significant and do not affect the economic efficiency of using a biogas plant. In turn, state regulation of prices and norms of gas consumption by the population is of decisive importance. The findings are of theoretical and practical importance. The methodology can be applied to assess the efficiency of using biogas plants in industry and gasification projects in the remote areas of Russia.


2008 ◽  
Vol 57 (6) ◽  
pp. 803-808 ◽  
Author(s):  
J. Wiese ◽  
O. Kujawski

Agricultural biogas plants based on energy crops gain more and more importance because of numerous energetic, environmental and agricultural benefits. In contrast to older biogas plants, the newest generation of biogas plants is equipped with modern ICA equipment and reliable machines/engines. In this paper, the authors present technical details and operational results of a modern full-scale agricultural biogas plant using energy crops.


2018 ◽  
Vol 8 (11) ◽  
pp. 2083 ◽  
Author(s):  
Magdalena Muradin ◽  
Katarzyna Joachimiak-Lechman ◽  
Zenon Foltynowicz

Implementation of the circular economy is one of the priorities of the European Union, and energy efficiency is one of its pillars. This article discusses an effective use of agri-food industry waste for the purposes of waste-to-energy in biogas plants. Its basic objective is the comparative assessment of the eco-efficiency of biogas production depending on the type of feedstock used, its transport and possibility to use generated heat. The environmental impact of the analysed installations was assessed with the application of the Life Cycle Assessment (LCA) methodology. Cost calculation was performed using the Levelized Cost of Electricity (LCOE) method. The LCA analysis indicated that a biogas plant with a lower level of waste heat use where substrates were delivered by wheeled transport has a negative impact on the environment. The structure of distributed energy production cost indicates a substantial share of feedstock supply costs in the total value of the LCOE ratio. Thus, the factor affecting the achievement of high eco-efficiency is the location of a biogas plant in the vicinity of an agri-food processing plant, from which the basic feedstock for biogas production is supplied with the transmission pipeline, whereas heat is transferred for the needs of production processes in a processing plant or farm.


Author(s):  
I. Aicardi ◽  
S. Angeli ◽  
N. Grasso ◽  
A. M. Lingua ◽  
P. Maschio

Abstract. Climate change is already affecting the entire world, with extreme weather conditions such as drought, heat waves, heavy rain, floods and landslides becoming more frequent, including Europe. In according to Paris agreement and relative European announcement of Carbon neutrality (by 2050), the saving of water and energy supplies is a fundamental aspect in the management of resources in production, sports, hospitality facilities and so on. Some methodologies for the optimization of the consumption of natural resources are required. This article describes an activity aimed at measuring, monitoring and analysing the thickness of the snowpack on the ski slopes during the winter season to permit a sustainable approach of snowmaking in alpine ski areas . The authors propose a methodology based on the integration of multitemporal surface (ground/snow) survey by Autonomous Aerial Vehicle (AAV) and low cost GNSS receivers mounted on snow groomers for a RTK (Real Time Kinematic) solution. To obtain a complete snow surface digital models with poor detailed images on ski slopes, some pre-processing techniques have been analysed to locally improve contrast and details with a local high pass filtering. The methodology has been employed in two study areas (Limone Piemonte, Prato Nevoso) located in the province of Cuneo, in the southern alpine area of Piedmont.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5374
Author(s):  
Robert Bedoić ◽  
Goran Smoljanić ◽  
Tomislav Pukšec ◽  
Lidija Čuček ◽  
Davor Ljubas ◽  
...  

Crop-based biogas energy production, in combination with electricity generation under subsidy schemes, is no longer considered a favourable business model for biogas plants. Switching to low-cost or gate fee feedstocks and utilising biogas via alternative pathways could contribute to making existing plants fit for future operations and could open up new space for further expansion of the biogas sector. The aim of this study was to combine a holistic and interdisciplinary approach for both the biogas production side and the utilisation side to evaluate the impact of integrating the biogas sector with waste management systems and energy systems operating with a high share of renewable energy sources. The geospatial availability of residue materials from agriculture, industry and municipalities was assessed using QGIS software for the case of Northern Croatia with the goal of replacing maize silage in the operation of existing biogas plants. Furthermore, the analysis included positioning new biogas plants, which would produce renewable gas. The overall approach was evaluated through life cycle assessment using SimaPro software to quantify the environmental benefits and identify the bottlenecks of the implemented actions. The results showed that the given feedstocks could replace 212 GWh of biogas from maize silage in the relevant region and create an additional 191 GWh of biomethane in new plants. The LCA revealed that the proposed measures would contribute to the decarbonisation of natural gas by creating environmental benefits that are 36 times greater compared to a business-as-usual concept. The presented approach could be of interest to stakeholders in the biogas sector anywhere in the world to encourage further integration of biogas technologies into energy and environmental transitions.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012189
Author(s):  
J Virbulis ◽  
M Sjomkane ◽  
M Surovovs ◽  
A Jakovics

Abstract In addition to infection with SARS-CoV-2 via direct droplet transmission or contact with contaminated surfaces, infection via aerosol transport is a predominant pathway in indoor environments. The developed numerical model evaluates the risk of a COVID-19 infection in a particular room based on measurements of temperature, humidity, CO2 and particle concentration, the number of people and instances of speech, coughs and sneezing using a dedicated low-cost sensor system. The model can dynamically provide the predicted risk of infection to the building management system or people in the room. The effect of temperature, humidity and ventilation intensity on the infection risk is shown. Coughing and especially sneezing greatly increase the probability of infection in the room; therefore distinguishing these events is crucial for the applied measurement system.


Sign in / Sign up

Export Citation Format

Share Document