Histologic and Biomechanical Evaluation of 2 Resorbable-Blasting Media Implant Surfaces at Early Implantation Times

2013 ◽  
Vol 39 (4) ◽  
pp. 445-453 ◽  
Author(s):  
Charles Marin ◽  
Estevam A. Bonfante ◽  
Ryan Jeong ◽  
Rodrigo Granato ◽  
Gabriela Giro ◽  
...  

This study evaluated 3 implant surfaces in a dog model: (1) resorbable-blasting media + acid-etched (RBMa), alumina-blasting + acid-etching (AB/AE), and AB/AE + RBMa (hybrid). All of the surfaces were minimally rough, and Ca and P were present for the RBMa and hybrid surfaces. Following 2 weeks in vivo, no significant differences were observed for torque, bone-to-implant contact, and bone-area fraction occupied measurements. Newly formed woven bone was observed in proximity with all surfaces.

2019 ◽  
Vol 8 (8) ◽  
pp. 1198 ◽  
Author(s):  
Michele Stocchero ◽  
Yohei Jinno ◽  
Marco Toia ◽  
Marianne Ahmad ◽  
Evaggelia Papia ◽  
...  

Background: The intraosseous temperature during implant installation has never been evaluated in an in vivo controlled setup. The aims were to investigate the influence of a drilling protocol and implant surface on the intraosseous temperature during implant installation, to evaluate the influence of temperature increase on osseointegration and to calculate the heat distribution in cortical bone. Methods: Forty Brånemark implants were installed into the metatarsal bone of Finnish Dorset crossbred sheep according to two different drilling protocols (undersized/non-undersized) and two surfaces (moderately rough/turned). The intraosseous temperature was recorded, and Finite Element Model (FEM) was generated to understand the thermal behavior. Non-decalcified histology was carried out after five weeks of healing. The following osseointegration parameters were calculated: Bone-to-implant contact (BIC), Bone Area Fraction Occupancy (BAFO), and Bone Area Fraction Occupancy up to 1.5 mm (BA1.5). A multiple regression model was used to identify the influencing variables on the histomorphometric parameters. Results: The temperature was affected by the drilling protocol, while no influence was demonstrated by the implant surface. BIC was positively influenced by the undersized drilling protocol and rough surface, BAFO was negatively influenced by the temperature rise, and BA1.5 was negatively influenced by the undersized drilling protocol. FEM showed that the temperature at the implant interface might exceed the limit for bone necrosis. Conclusion: The intraosseous temperature is greatly increased by an undersized drilling protocol but not from the implant surface. The temperature increase negatively affects the bone healing in the proximity of the implant. The undersized drilling protocol for Brånemark implant systems increases the amount of bone at the interface, but it negatively impacts the bone far from the implant.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1381-1387 ◽  
Author(s):  
Fumio Nogata ◽  
Akira Shimamoto ◽  
Toshihiko Habu

A new method for estimating in vivo bone strength using ultrasound inspection is described, which can allow diagnose of osteoporosis from the viewpoint of mechanical integrity. The method was based on the two-dimensional area fraction of bone calculated from the difference in the speed of ultrasound propagation through cancellous bone. Then bulk Young's modulus was calculated for various architectures of the cancellous bone with the bone area fraction (S) using finite element method. Since there was a good relationship between the BMD (bone mineral density) by DXA (dual energy x-ray absorptiometry) method and the bone area fraction by ultrasound inspection, the technique also allows the estimation of in vivo BMD of the spine, which has been traditionally used at medical area to diagnose osteoporosis. Note that the periodic estimation of the bulk Young's modulus and strength applying the technique is effective to predict the fracture risk for in vivo bone.


2012 ◽  
Vol 38 (5) ◽  
pp. 549-557 ◽  
Author(s):  
Estevam A. Bonfante ◽  
Charles Marin ◽  
Rodrigo Granato ◽  
Marcelo Suzuki ◽  
Jenni Hjerppe ◽  
...  

This study evaluated the early biomechanical fixation and bone-to-implant contact (BIC) of an alumina-blasted/acid-etched (AB/AE) compared with an experimental resorbable blasting media (RBM) surface in a canine model. Higher texturization was observed for the RBM than for the AB/AE surface, and the presence of calcium and phosphorus was only observed for the RBM surface. Time in vivo and implant surface did not influence torque. For both surfaces, BIC significantly increased from 2 to 4 weeks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jungwon Lee ◽  
Jun-Beom Lee ◽  
Junseob Yun ◽  
In-Chul Rhyu ◽  
Yong-Moo Lee ◽  
...  

Abstract3D printing technology has been gradually applied to various areas. In the present study, 3D-printed implants were fabricated with direct metal laser sintering technique for a dental single root with titanium. The 3D implants were allocated into following groups: not treated (3D-None), sandblasted with a large grit and acid-etched (3D-SLA), and target-ion-induced plasma-sputtered surface (3D-TIPS). Two holes were drilled in each tibia of rabbit, and the three groups of implants were randomly placed with a mallet. Rabbits were sacrificed at two, four, and twelve weeks after the surgery. Histologic and histomorphometric analyses were performed for the evaluation of mineralized bone-to-implant contact (mBIC), osteoid-to-implant contact (OIC), total bone-to-implant contact (tBIC), mineralized bone area fraction occupancy (mBAFO), osteoid area fraction occupancy (OAFO), and total bone area fraction occupancy (tBAFO) in the inner and outer areas of lattice structure. At two weeks, 3D-TIPS showed significantly higher inner and outer tBIC and inner tBAFO compared with other groups. At four weeks, 3D-TIPS showed significantly higher outer OIC than 3D-SLA, but there were no significant differences in other variables. At twelve weeks, there were no significant differences. The surface treatment with TIPS in 3D-printed implants could enhance the osseointegration process in the rabbit tibia model, meaning that earlier osseointegration could be achieved.


2020 ◽  
Vol 61 (6) ◽  
pp. 177-187
Author(s):  
Till Kämmerer ◽  
Tony Lesmeister ◽  
Victor Palarie ◽  
Eik Schiegnitz ◽  
Andrea Schröter ◽  
...  

Introduction: We aimed to compare implant osseointegration with calcium phosphate (CaP) surfaces and rough subtractive-treated sandblasted/acid etched surfaces (SA) in an in vivo minipig mandible model. Materials and Methods: A total of 36 cylindrical press-fit implants with two different surfaces (CaP, n = 18; SA, n = 18) were inserted bilaterally into the mandible of 9 adult female minipigs. After 2, 4, and 8 weeks, we analyzed the cortical bone-to-implant contact (cBIC; %) and area coverage of bone-to-implant contact within representative bone chambers (aBIC; %). Results: After 2 weeks, CaP implants showed no significant increase in cBIC and aBIC compared to SA (cBIC: mean 38 ± 5 vs. 16 ± 11%; aBIC: mean 21 ± 1 vs. 6 ± 9%). Two CaP implants failed to achieve osseointegration. After 4 weeks, no statistical difference between CaP and SA was seen for cBIC (mean 54 ± 15 vs. 43 ± 16%) and aBIC (mean 43 ± 28 vs. 32 ± 6). However, we excluded two implants in each group due to failure of osseointegration. After 8 weeks, we observed no significant intergroup differences (cBIC: 18 ± 9 vs. 18 ± 20%; aBIC: 13 ± 8 vs. 16 ± 9%). Again, three CaP implants and two SA implants had to be excluded due to failure of osseointegration. Conclusion: Due to multiple implant losses, we cannot recommend the oral mandibular minipig in vivo model for future endosseous implant research. Considering the higher rate of osseointegration failure, CaP coatings may provide an alternative to common subtractive implant surface modifications in the early phase post-insertion.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1147
Author(s):  
Alessio Danilo Inchingolo ◽  
Angelo Michele Inchingolo ◽  
Ioana Roxana Bordea ◽  
Edit Xhajanka ◽  
Donato Mario Romeo ◽  
...  

Many different osteotomy procedures has been proposed in the literature for dental implant site preparation. The osseodensification is a drilling technique that has been proposed to improve the local bone quality and implant stability in poor density alveolar ridges. This technique determines an expansion of the implant site by increasing the density of the adjacent bone. The aim of the present investigation was to evaluate the effectiveness of the osseodensification technique for implant site preparation through a literature review and meta-analysis. The database electronic research was performed on PubMed (Medline) database for the screening of the scientific papers. A total of 16 articles have been identified suitable for the review and qualitative analysis—11 clinical studies (eight on animals, three on human subjects), four literature reviews, and one case report. The meta-analysis was performed to compare the bone-to-implant contact % (BIC), bone area fraction occupied % (BAFO), and insertion torque of clockwise and counter-clockwise osseodensification procedure in animal studies. The included articles reported a significant increase in the insertion torque of the implants positioned through the osseodensification protocol compared to the conventional drilling technique. Advantages of this new technique are important above all when the patient has a strong missing and/or low quantity of bone tissue. The data collected until the drafting of this paper detect an improvement when the osseodensification has been adopted if compared to the conventional technique. A significant difference in BIC and insertion torque between the clockwise and counter-clockwise osseodensification procedure was reported, with no difference in BAFO measurements between the two approaches. The effectiveness of the present study demonstrated that the osseodensification drilling protocol is a useful technique to obtain increased implant insertion torque and bone to implant contact (BIC) in vivo. Further randomized clinical studies are required to confirm these pieces of evidence in human studies.


2006 ◽  
Vol 5 (3) ◽  
pp. 234-242 ◽  
Author(s):  
Nobuaki Tsukamoto ◽  
Takeshi Maeda ◽  
Hiromasa Miura ◽  
Seiya Jingushi ◽  
Akira Hosokawa ◽  
...  

Object Mechanical stress has been considered one of the important factors in ossification of the spinal ligaments. According to previous clinical and in vitro studies, the accumulation of tensile stress to these ligaments may be responsible for ligament ossification. To elucidate the relationship between such mechanical stress and the development of ossification of the spinal ligaments, the authors established an animal experimental model in which the in vivo response of the spinal ligaments to direct repetitive tensile loading could be observed. Methods The caudal vertebrae of adult Wistar rats were studied. After creating a novel stimulating apparatus, cyclic tensile force was loaded to rat caudal spinal ligaments at 10 N in 600 to 1800 cycles per day for up to 2 weeks. The morphological responses were then evaluated histologically and immunohistochemically. After the loadings, ectopic cartilaginous formations surrounded by proliferating round cells were observed near the insertion of the spinal ligaments. Several areas of the cartilaginous tissue were accompanied by woven bone. Bone morphogenetic protein–2 expression was clearly observed in the cytoplasm of the proliferating round cells. The histological features of the rat spinal ligaments induced by the tensile loadings resembled those of spinal ligament ossification observed in humans. Conclusions The findings obtained in the present study strongly suggest that repetitive tensile stress to the spinal ligaments is one of the important causes of ligament ossification in the spine.


2011 ◽  
Vol 493-494 ◽  
pp. 467-472 ◽  
Author(s):  
Martin Adam ◽  
Cornelia Ganz ◽  
Wei Guo Xu ◽  
Hamit R. Sarajian ◽  
Bernhard Frerich ◽  
...  

The apposition of bone at early stages is critical for rapid loading and therefore there is much effort in improving the implant surfaces for a rapid osseointegration. The aim of this study is to investigate the effect of roughness, hydrophilicity and coating on osseointegration. Machined (smooth), sand-blasted (rough), hydrophilic and coated implants were testedin vivofor 2, 4 and 6 weeks. The hydrophilic surfaces were obtained by atmospheric oxygen plasma treatment of machined and sand-blasted implants. The coating is obtained by a spin-spray-process using sol-gel-technique. SEM and TEM investigations revealed that the coating consists of a nanoporous silica matrix with embedded synthetic, nanocrystalline hydroxyapatite. Histological polished sections were manufactured and the bone-to-implant-contact was calculated. The difference between smooth and rough implants was marginal and not significant. There were no statistical differences between hydrophilic and control implants, whereas the BIC of the hydrophilic surfaces was lower by trend. All coated implants offered an increased bone to implant-contact. However, the BIC was decreasing at 6 weeks due to the missing of mechanical stress and a faster bone metabolism in rabbits. The coating offers a new opportunity to enhance the osseointegration and therefore an earlier implant loading.


2014 ◽  
Vol 8 (1) ◽  
pp. 114-119 ◽  
Author(s):  
In-Sung Yeo

Screw-shaped endosseous implants that have a turned surface of commercially pure titanium have a disadvantage of requiring a long time for osseointegration while those implants have shown long-term clinical success in single and multiple restorations. Titanium implant surfaces have been modified in various ways to improve biocompatibility and accelerate osseointegration, which results in a shorter edentulous period for a patient. This article reviewed some important modified titanium surfaces, exploring the in vitro, in vivo and clinical results that numerous comparison studies reported. Several methods are widely used to modify the topography or chemistry of titanium surface, including blasting, acid etching, anodic oxidation, fluoride treatment, and calcium phosphate coating. Such modified surfaces demonstrate faster and stronger osseointegration than the turned commercially pure titanium surface. However, there have been many studies finding no significant differences in in vivo bone responses among the modified surfaces. Considering those in vivo results, physical properties like roughening by sandblasting and acid etching may be major contributors to favorable bone response in biological environments over chemical properties obtained from various modifications including fluoride treatment and calcium phosphate application. Recently, hydrophilic properties added to the roughened surfaces or some osteogenic peptides coated on the surfaces have shown higher biocompatibility and have induced faster osseointegration, compared to the existing modified surfaces. However, the long-term clinical studies about those innovative surfaces are still lacking.


Sign in / Sign up

Export Citation Format

Share Document