scholarly journals Effect of Al2O3 and CaF2 additives on the viscosity of conventional cryolite melts

2021 ◽  
Vol 8 (3) ◽  
pp. 20218306
Author(s):  
A. S. Lyutina ◽  
A. A. Kataev ◽  
A. V. Rudenko ◽  
O. Yu. Tkacheva

The viscosity of cryolite melts of conventional composition NaF–AlF3–CaF2–Al2O3 was studied by rotational viscometry using the FRS 1600 high-temperature rheometer. The cryolite ratio of the NaF–AlF3 melt was 2.1, 2.3, and 2.5; the Al2O3 content varied from 2 to 6.6, and CaF2 – from 0 to 8 wt%. The measurements were carried out in the temperature range from liquidus to 1200 °C. The conditions for the laminar flow of the investigated melts were determined, based on the measurements of the cryolite melts viscosity as a function of the shear rate at a constant temperature. A shear rate of 12 ± 1 s–1 was chosen for studying the viscosity temperature dependence for all samples. The viscosity temperature dependence of cryolite melts is described by a linear equation. The temperature coefficient b in this equation has negative values and varies in the range of (–0.01)–(–0.06) mPa·s/deg. It was found that the viscosity of cryolite melts of conventional composition in the range of operating temperatures of aluminum electrolysis (950–970 °C) varies from 2.5 to 3.7 mPa·s (depending on the composition and temperature). The viscosity of cryolite-alumina melts increases with the rise of alumina content: 1 wt% Al2O3 increases the viscosity, on average, by 1%. However, the influence of CaF2 is more significant: the addition of 1 wt% CaF2 leads to an increase in viscosity by 3%. A decrease in the CR of the melt by 0.1 (in the range of 2.1–2.5) leads to a decrease in the viscosity of cryolite melts by 2.3%. A viscosity regression equation for the cryolite melts of conventional composition as a function of several independent parameters (temperature, CR, CaF2 and Al2O3 content) is obtained by the multivariable approximation of experimental data. The equation satisfactorily (within 1.5%) describes the viscosity of conventional industrial electrolytes and can be used for estimation of their viscosity.

2009 ◽  
Vol 19 (4) ◽  
pp. 3637-3644 ◽  
Author(s):  
Doan N. Nguyen ◽  
Pamidi V. P. S. S. Sastry ◽  
David C. Knoll ◽  
Justin Schwartz

A versatile experimental facility was designed and set up to measure transport ac losses, magnetization ac losses, and total ac losses in high-temperature superconductors at variable temperatures. Several sets of measurements were carried out in the temperature range of 35 K to 100 K. Sample temperature during the measurements could be controlled within plusmn0.5 K of set temperature. Temperature dependence of transport losses reflects variation of critical current density of the tapes with temperature. Temperature dependence of magnetization losses exhibits an interesting behavior with a peak, whose position shifts to lower temperatures as the magnetic field is increased. Experimental data of ac losses at various temperatures are compared with those calculated using numerical methods. Generally, the simulated results reproduce well the experimental data.


Author(s):  
I. Khidirov ◽  
V. V. Getmanskiy ◽  
A. S. Parpiev ◽  
Sh. A. Makhmudov

This work relates to the field of thermophysical parameters of refractory interstitial alloys. The isochoric heat capacity of cubic titanium carbide TiCx has been calculated within the Debye approximation in the carbon concentration  range x = 0.70–0.97 at room temperature (300 K) and at liquid nitrogen temperature (80 K) through the Debye temperature established on the basis of neutron diffraction analysis data. It has been found out that at room temperature with decrease of carbon concentration the heat capacity significantly increases from 29.40 J/mol·K to 34.20 J/mol·K, and at T = 80 K – from 3.08 J/mol·K to 8.20 J/mol·K. The work analyzes the literature data and gives the results of the evaluation of the high-temperature dependence of the heat capacity СV of the cubic titanium carbide TiC0.97 based on the data of neutron structural analysis. It has been proposed to amend in the Neumann–Kopp formula to describe the high-temperature dependence of the titanium carbide heat capacity. After the amendment, the Neumann–Kopp formula describes the results of well-known experiments on the high-temperature dependence of the heat capacity of the titanium carbide TiCx. The proposed formula takes into account the degree of thermal excitation (a quantized number) that increases in steps with increasing temperature.The results allow us to predict the thermodynamic characteristics of titanium carbide in the temperature range of 300–3000 K and can be useful for materials scientists.


2014 ◽  
Vol 5 (3) ◽  
pp. 982-992 ◽  
Author(s):  
M AL-Jalali

Resistivity temperature – dependence and residual resistivity concentration-dependence in pure noble metals(Cu, Ag, Au) have been studied at low temperatures. Dominations of electron – dislocation and impurity, electron-electron, and electron-phonon scattering were analyzed, contribution of these mechanisms to resistivity were discussed, taking into consideration existing theoretical models and available experimental data, where some new results and ideas were investigated.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 369
Author(s):  
Xintao Fu ◽  
Zepeng Wang ◽  
Lianxiang Ma

In this paper, some representative hyperelastic constitutive models of rubber materials were reviewed from the perspectives of molecular chain network statistical mechanics and continuum mechanics. Based on the advantages of existing models, an improved constitutive model was developed, and the stress–strain relationship was derived. Uniaxial tensile tests were performed on two types of filled tire compounds at different temperatures. The physical phenomena related to rubber deformation were analyzed, and the temperature dependence of the mechanical behavior of filled rubber in a larger deformation range (150% strain) was revealed from multiple angles. Based on the experimental data, the ability of several models to describe the stress–strain mechanical response of carbon black filled compound was studied, and the application limitations of some constitutive models were revealed. Combined with the experimental data, the ability of Yeoh model, Ogden model (n = 3), and improved eight-chain model to characterize the temperature dependence was studied, and the laws of temperature dependence of their parameters were revealed. By fitting the uniaxial tensile test data and comparing it with the Yeoh model, the improved eight-chain model was proved to have a better ability to predict the hyperelastic behavior of rubber materials under different deformation states. Finally, the improved eight-chain model was successfully applied to finite element analysis (FEA) and compared with the experimental data. It was found that the improved eight-chain model can accurately describe the stress–strain characteristics of filled rubber.


1996 ◽  
Vol 442 ◽  
Author(s):  
J.-M. Spaeth ◽  
S. Greulich-Weber ◽  
M. März ◽  
E. N. Kalabukhova ◽  
S. N. Lukin

AbstractThe electronic structure of nitrogen donors in 6H-, 4H- and 3C-SiC is investigated by measuring the nitrogen hyperfine (hf) interactions with electron nuclear double resonance (ENDOR) and the temperature dependence of the hf split electron paramagnetic resonance (EPR) spectra. Superhyperfine (shf) interactions with many shells of 13C and 29Si were measured in 6H-SiC. The hf and shf interactions are discussed in the framework of effective mass theory. The temperature dependence is explained with the thermal occupation of the lowest valley-orbit split A1 and E states. It is proposed that the EPR spectra of P donors observed previously in neutron transmuted 6H-SiC at low temperature (<10K) and high temperature (>60K) are all due to substitutional P donors on the two quasi-cubic and hexagonal Si sites, whereby at low temperature the E state is occupied and at high temperature the A1 state. The low temperature spectra are thus thought not to be due to P-vacancy pair defects as proposed previously.


1992 ◽  
Vol 105-110 ◽  
pp. 477-484 ◽  
Author(s):  
C.S. Sundar ◽  
A. Bharathi ◽  
Yan Ching Jean ◽  
W.Y. Ching ◽  
X. Lu ◽  
...  

1999 ◽  
Vol 62 (8) ◽  
pp. 861-866 ◽  
Author(s):  
PUNIDADAS PIYASENA ◽  
ROBIN C. McKELLAR

Mathematical models describing the thermal inactivation of γ-glutamyl transpeptidase (TP) and Listeria innocua in milk during high-temperature short-time (HTST) pasteurization were validated with data from TP, L. innocua, and L. monocytogenes trials in guar gum–milk. Holding tube times were determined for turbulent flow using water, and for laminar flow using a guar gum (0.27% wt/wt)–sucrose (5.3% wt/wt)–water mixture. Inactivation of TP and L. innocua was lower in a solution of guar gum (0.25% wt/wt) in whole milk than was predicted by models derived from studies with whole milk alone. Use of laminar flow timings improved model fit but did not completely account for the observed protective effect. L. monocytogenes survival was close to that predicted by the L. innocua model, although some protection was afforded this pathogen under laminar flow. Considerable intertrial variability was noted for L. monocytogenes. Risk analysis simulations using @RISK, a Lotus 1-2–3W add-in, were used to account for intertrial variability. Simulated log10 %reductions consistently underpredicted experimental L. monocytogenes survival (fail-safe), thus the L. innocua model derived in milk is suitable for estimating L. monocytogenes survival in viscous products. Increased thermal tolerance during laminar flow may be attributed to the protective effect of stabilizer.


1988 ◽  
Vol 21 (4) ◽  
pp. 1174-1176 ◽  
Author(s):  
C. De Rosa ◽  
G. Guerra ◽  
V. Petraccone ◽  
R. Centore ◽  
P. Corradini

1978 ◽  
Vol 32 (5) ◽  
pp. 489-493 ◽  
Author(s):  
D. B. Olson ◽  
W. G. Mallard ◽  
W. C. Gardiner

Absorptivity measurements for the 3.39 µm He-Ne laser line are reported for methane, acetylene, ethylene, ethane, propane, n-butane, and n-pentane over the temperature range 300 < T < 2000°K. Shock-heated mixtures containing formaldehyde and methyl iodide showed no absorption or transient absorption at any temperature that could be attributed to formaldehyde or methyl radicals. The temperature dependence of the absorptivities of the C2 and higher hydrocarbons was much weaker than for methane. Comparison with simple theoretical expectations and broad-band absorptivities showed that the higher hydrocarbon absorptions include quite large numbers of absorbing states.


Author(s):  
Maurizio Iovane ◽  
Giovanna Aronne

AbstractMany crop species are cultivated to produce seeds and/or fruits and therefore need reproductive success to occur. Previous studies proved that high temperature on mature pollen at anther dehiscence reduce viability and germinability therefore decreasing crop productivity. We hypothesized that high temperature might affect pollen functionality even if the heat treatment is exerted only during the microsporogenesis. Experimental data on Solanum lycopersicum ‘Micro-Tom’ confirmed our hypothesis. Microsporogenesis successfully occurred at both high (30 °C) and optimal (22 °C) temperature. After the anthesis, viability and germinability of the pollen developed at optimal temperature gradually decreased and the reduction was slightly higher when pollen was incubated at 30 °C. Conversely, temperature effect was eagerly enhanced in pollen developed at high temperature. In this case, a drastic reduction of viability and a drop-off to zero of germinability occurred not only when pollen was incubated at 30 °C but also at 22 °C. Further ontogenetic analyses disclosed that high temperature significantly speeded-up the microsporogenesis and the early microgametogenesis (from vacuolated stage to bi-cellular pollen); therefore, gametophytes result already senescent at flower anthesis. Our work contributes to unravel the effects of heat stress on pollen revealing that high temperature conditions during microsporogenesis prime a fatal shortening of the male gametophyte lifespan.


Sign in / Sign up

Export Citation Format

Share Document