scholarly journals Anatomical and Physiological Effects of Spent-Engine Oil on Two Varieties of Abelmoschus esculentus (L.) Moench. from Malvaceae

2018 ◽  
Vol 10 (4) ◽  
pp. 584-596 ◽  
Author(s):  
Oluwaloni P. OLUWANISOLA ◽  
Abdullahi A. ABDULRAHAMAN

The effect of different levels of spent engine oil application on germination, survival, growth, leaf anatomy, yield, nutrient content and heavy metals uptake of okra (Abelmoschus esculentus – ‘Clemson’ spineless variety and ‘OLA 3 Local’ variety) was assessed in the present study. Completely randomized design was used with five treatment levels of spent engine oil at 0 ml (control), 50 ml, 100 ml, 150 ml and 200 ml applied to 5 kg of soil. Data on germination, seedling survival, growth, chlorophyll nutrient and heavy metal content, as well as leaf epidermal features collected from the study were subjected to Statistical Package for Social Sciences (SPSS) analyses. Spent engine oil at 200 ml per pot significantly (P < 0.05) delayed seed germination for 4 days and reduced germination percentage by approximately 24% compared to the control. Plant height, number of leaves, leaf area, chlorophyll A, B and stomata area were reduced by 21.33-72.89%; number and dry weight of fruits were reduced by 67.4-13.58%. Number of stomata was increased on the adaxial surface by 57.73% and on the abaxial surface by 34.99%. Na, K, Cr, Cd and Fe contents increased by 0.0178-6.2698 mg/kg-1. The present study has shown that plant constituents and anatomy can be influenced by spent oil contamination. Contamination of soil with spent engine oil therefore should be avoided in order to ensure sustainable crop plant productivity and to reduce the risk of heavy metals toxicity for human beings.

2019 ◽  
Author(s):  
C. Ugwu Emmanuel ◽  
O. Nwadinigwe Alfreda ◽  
C. Agbo Benita

AbstractSenna alata L. was used to remediate heavy metals in soil polluted with spent engine oil (SEO). One hundred and twenty polythene bags filled with 20 kg of soil each were separated into parts A and B. Part A contained S. alata seedlings while part B had no plant. They were set up in completely randomized design. To simulate spillage, 0.15% v/w, 0.75% v/w and 3.75% v/w concentrations of SEO were used to pollute soil planted with seeds of S. alata, 57 days after planting. These treatments were repeated in soil without seeds. Control had no pollution. Heavy metal analyses of SEO, vegetated and non-vegetated soil, leaves, stems and roots of S. alata were determined using Flame Atomic Absorption Spectroscopy, 106 days after pollution. Vegetative and reproductive parameters were also determined. Copper, Lead, Zinc, Iron and Aluminium were detected in SEO. Concentrations of heavy metals in vegetated soils were significantly (P < 0.05) less than those of non-vegetated soils. Cu accumulation in stem was significantly (P < 0.05) higher than those of leaves and roots. Zn and Al were significantly (P < 0.05) higher in root than those in leaves and stems. Fe and Pb were significantly (P < 0.05) higher in leaves than in stems and roots. Aerial roots were formed by S. alata which increased significantly with increase in concentrations of SEO applied. However, many vegetative parameters such as plant height, number of pinnules, number of roots, leaf area and stem circumference increased significantly (P < 0.05) but some reproductive parameters such as number of inflorescence and dry weight of seeds decreased after pollution. Hence, S. alata is suitable for phytoremediation and in particular, phytoaccumulation of heavy metals in SEO contaminated soil.


2019 ◽  
Vol 3 (5) ◽  
pp. 471-484
Author(s):  
Adeniyi Adeleye ◽  
Mohammed B. Yerima ◽  
Michael E. Nkereuwem ◽  
Victor O. Onokebhagbe ◽  
Peter G. Shiaka ◽  
...  

2018 ◽  
Vol 7 (1) ◽  
pp. 60-84
Author(s):  
Monday Ubogu ◽  
Lucky O. Odokuma ◽  
Ejiro Akponah

P. australis, E. crassipes (in mangrove swamp) and S. officinarum (in rainforest) are capable of tolerating some levels of crude oil in soil. However, some important growth characteristics such speedy growths, extensive root system and increased biomass desirable for efficient rhizoremediation are depressed. To cushion this suppressive effects, plants were subjected to the following treatments: Plant + Soil (PS) (Control); Plant + Soil + Oil (PSO); Plant + Soil + Oil + Fertilizer (PSOF); Plant +Soil + Oil + Fertilizer + Microorganisms (PSOFM); and Plant + Soil + Fertilizer + Microorganisms + Solarization (PSOFMS). Treatments were monitored for 120 days to determine their effects on the following growth parameters: Germination, germination percentage, height, and root length, dry weight, and leaf area. Results indicated that treatments PSOF, PSOFM and PSOFMS enhanced all growth parameters over contaminated untreated soil (PSO) with the exception of germination in P. australis and S. officinarum; while root length, leaf area in E. crassipes were statistically the same for PS, PSO, PSOFM and PSOFMS (P ˂ 0.05). Overall, growth enhancement efficiencies of the applied treatments were in the order: PSOFM ˃ PSOF ˃ PSOFMS. Thus, growth of these plants can be enhanced in crude oil contaminated soil by the above treatments for efficient rhizoremediation.


2020 ◽  
pp. 17-25
Author(s):  
M. O. Nwachukwu ◽  
J. N. Azorji ◽  
L. A. Adjero ◽  
M. C. Green ◽  
C. E. Igwe ◽  
...  

This study investigated the impacts of spent engine oil on the physicochemical properties of soil, soil's microbial population and growth of Capsicum annuum. It covered assessment of different levels of contamination (0, 20, 40, 60 and 80%) in soil; which represents the degree of oil spillage concentration on the growth performance of C. annuum investigated. Percentage germination, seedling height, number of leaves and number of branches decreased as the concentrations of the spent engine oil in soil samples increased and affected soil physicochemical properties. The screening experiment conducted showed that poultry manure improved the physicochemical properties of sandy loam soils contaminated engine oil. The effects of poultry manure as an organic amendment was assessed using pepper (C. annuum) as test crop. All amendment made significant increase in soil organic carbon and calcium content over the polluted soils. Soil acidity increased, soil exchangeable ions decreased. N, P and K were altered in the polluted soils as compared to the controls. There were increased bacterial counts (2.21 – 2.85) and a decrease in fungi population (0.48 - 0.59) in the spent engine oil-contaminated soils compared with the control. The oil reduced germination percentage, depressed growth, reduction in leaf number and plant height of the C. annuum. Therefore the spent engine oil clearly had detrimental effects on soil's physicochemical and biological properties. The oil contributed largely to the extreme acidic nature of the polluted soils. However, maximum increase in plant height, germination percentage, number of leaves and branches were recorded with amendment of the polluted soils with poultry manure. Results show the considerable potential of remediation protocols with poultry manure as a remediating agent for oil spill remediation in the soil samples.


Author(s):  
O. I. Akpokodje ◽  
H. Uguru

This study investigated the impact of petroleum products on the physiochemical properties, heavy metals and THC of soil samples; and their possible phytoremediation. Perforated plastic buckets were filled with 10 kg of sieved virgin topsoil. A mixture of 2 L of spent engine oil, 2 L of kerosene, 2 L of petrol and 2 L of diesel was gradually poured into each bucket and allowed to drain through the soil, once a day for five days, and there after left to stabilize for a period of 21 days. Fluted pumpkin (Telforia Occidentalis) and Okra (Abelmoschus esculentus, Cv. Kirikou) seeds were planted in buckets and closely monitored for 14 weeks. Soil analysis of the virgin topsoil, contaminated soil and remediated soil was done using standard methods. Tests results showed that the petroleum products significantly (p ≤0.05) altered the physicochemical properties, heavy metals and THC of the soil. From the results, the soil porosity decreased from 35% to 14%; specific gravity decreased from 2.34 to 1.35; the soil pH decreased from 7.05 to 5.34; the THC increased from 0,923 mg/kg to 964.35 mg/kg; copper level increased from 4.892 mg/kg to 7.729 mg/kg; the lead content increased from <0.0001 mg/kg to 1.128 mg/kg; while the iron content increased from 1251.2 mg/kg to 1587.9 mg/kg after the contamination. After the 14 weeks phytoremediation period, Telfairia occidentalis was able to degrade the THC in the soil from 964.35 mg/kg to 82.67 mg/kg; while Abelmoschus esculentus degraded the THC in the soil from 964.35 mg/kg to 104 mg/kg. Therefore, due to the harmful effects of the petroleum products on agricultural soils, laws banning their indiscriminate disposal of should be enforced.


2018 ◽  
Vol 8 (2) ◽  
pp. 94-98
Author(s):  
A.A. Iyanda ◽  
J.I. Anetor ◽  
G.O. Anetor

Purpose: Data are available that indicate there is an elaborate elemental constitution of petroleum products, with identified elements contained in the many products being additive (e.g. Ca, Zn and P) as well as wear metals (e.g. Ag, Al, Ba, Cd, Cr, Cu, Fe, Mg, Mo, Na, Ni, Pb and Sn). In addition, incessant deliberate exposure of engine oil to both human beings and farm animals for therapeutic reason has been reported. Therefore the objective of this study is to evaluate the levels of heavy metals in serum of engine oil-exposed rats. Materials & Methods: Thirty adult female rats were divided equally into 5 groups. The first and second groups were treated with engine oil by oral route (as contaminant of feed) at dosage levels of 0.5 and 1.0 mL/kg body weight respectively. The third and forth groups received the test agent through the dermal route at dosage levels of 0.5 and 1.0 mL/kg body weight while the fifth group served as the control. The duration of the study was 30 days, after which blood was obtained from each rat, centrifuged and the resultant serum used for the analysis of heavy metals by employing Atomic Absorption Spectrometry (AAS). Data were analyzed using analysis of variance (ANOVA), p≤0.05 was considered significant. Results: Data obtained showed that there were significant differences in the levels of aluminium, silicon, cadmium, lead, arsenic, vanadium, and nickel. Conclusions: These increases suggest that incessant exposure to engine oil may be dangerous and therefore constitute health hazard.


2020 ◽  
Vol 8 (1) ◽  
pp. 91-104
Author(s):  
Elizabeth Adeyinka AJIBOYE ◽  
Hikmat Omolara SULAYMAN ◽  
Abdullahi Taiwo AJAO

The research aimed to investigate the bioremediation of spent engine oil on selected contaminated soils within Ilorin metropolis. To achieve this, soil samples were collected from three (3) mechanic workshops along Taiwo axis within the metropolis. The soil samples were then subjected to bioremediation using the land-farming approach. The physicochemical parameters of the soil samples before and after bioremediation were analyzed using standard methods. Bacteria were isolated using standard procedures and identified using biochemical tests and molecular methods. Results for the physicochemical parameters of the soil samples before bioremediation include particle size (all sandy in nature); pH (6.00 ± 0.14 - 6.20 ± 0.14); Organic carbon (14.65 ± 3.20 - 17.54 ± 1.87), Organic matter (33.50 ± 0.85 - 43.45 ± 9.12) and heavy metals (ND - 11.74 ± 0.07). Values after bioremediation for pH, organic carbon, organic matter and heavy metals were 8.25 ± 0.07 - 8.90 ± 0.14, 13.07 ± 0.05 - 13.25 ± 0.84, 37.25 ± 1.06 - 44.80 ± 1.13, ND - 9.40 ± 0.04 respectively. Values for bacterial count before and after bioremediation of the soil samples were 8.00  1.41 - 67.50 ± 2.12 x 105 CFU/mL and 6.50 ± 2.12 - 164.00 ± 11.31 x 105 CFU/mL respectively. Bacterial isolates were identified as Pseudomonas sp., Enterobacter sp., Acinetobacter sp., and Bacillus sp. while the hydrocarbon-utilizing bacteria were identified as Thalassospira mesophila strain JCM 18969; Pseudomonas fluorescens F113; Siccibacter turicensis LMG 23730; Pseudomonas Zeshuii strain KACC 15471; Pseudomonas stutzeri strain CGMCC 1.1803 and Marinobacter hydrocarbonoclasticus strain ATCC 49840. In conclusion, the bacteria isolates effectively bioremediated the spent engine oil contaminated soils with a reduction of hydrocarbon pollutants.


2019 ◽  
Vol 12 (6) ◽  
pp. 228-234
Author(s):  
Emmanuel Chibuzo Ugwu ◽  
Alfreda Ogochukwu Nwadinigwe ◽  
Benita Chinenye Agbo

2017 ◽  
Vol 5 (11) ◽  
pp. 355-365 ◽  
Author(s):  
Babajide ◽  
Popoola ◽  
Gbadamosi ◽  
Oyedele ◽  
Liasu

While strategizing towards achieving improved soil fertility for sustainable tropical crop production, timely application of fertilizers on regular basis alone is not the University of Technology, Ogbomoso, Oyo State, Nigeria best approach, particularly on polluted soils. However, seeking for reliable natural, biological and environment friendly means of ensuring effective riddance of toxic elements or heavy metals from tropical agricultural soils is equally a worthwhile technology. An open-field potted experiment was conducted during early raining season of 2016 (March-July), at the Teaching and Research Farms of Oyo State College of Agriculture and Technology, Igboora, to investigate the effect of spent engine oil polluted soil conditions on performance and heavy metal accumulation potentials of Ceratothecasesamoides. Spent engine oil was applied at different concentrations (0.0ml, 50.0ml, 100.0ml, 150.0ml, and 200.0ml to each pot containing 7kg soil. Four pots per treatments were used. The trial was arranged in Completely Randomised Design (CRD), replicated three (3) times. Data were collected on growth parameters (number of leaves, plant height, stem girth, leaf length and leaf breadth). The data were subjected to analysis of variance (ANOVA) and Duncan Multiple Range Test (DMRT) was used to the means. Pre and post-cropping soil analyses were carried out, for determination of nutrient concentrations. Also, after the termination of the experiment, plant samples were collected from each of the pots for oven-drying followed by determination of nutrient concentrations (including the heavy metals). Oil pollution significantly affected growth and heavy metal accumulation of the test-crop. Growth decreases with increasing rate of lubricant application, while the heavy metal concentrations in the test-crop increased with increasing concentrations of the applied spent engine oil. Thus, Ceratothecasesamoides is a wild plant which could be easily exploited for its heavy metals hyper-accumulative or phyto-extractive potentials, so as to reclaim heavy metals polluted soils from toxicity, for sustainable crop production.


Sign in / Sign up

Export Citation Format

Share Document