scholarly journals Antimicrobial Activity of Selected Mosses on Obafemi Awolowo University Campus, Ile-Ife, Nigeria

2019 ◽  
Vol 11 (3) ◽  
pp. 462-466
Author(s):  
Kehinde O. OLASOJI ◽  
Amos M. MAKINDE ◽  
Bolajoko A. AKINPELU ◽  
Oluwatoyin A. IGBENEGHU ◽  
Musibau O. ISA

The present study aimed to evaluate antimicrobial activity of ethanol, methanol, schnapp (40% alcohol), oil palm wine and Raffia palm wine extracts of moss species Archidium ohioense, Pelekium gratum and Hyophila involuta against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Candida pseudotropicalis. The antimicrobial activities of the alcoholic extracts were tested against selected microorganisms using agar well diffusion method. Minimum inhibitory concentrations (MIC) of the extracts were determined using standard methods. The antimicrobial test of the extracts on selected organisms revealed that the methanolic and ethanolic extracts of the mosses studied were inactive against all the bacteria and fungi screened, while the schnapp, Oil palm wine and Raffia palm wine extracts showed significant activity against the selected organisms. The minimum inhibitory concentration (MIC) value of the extracts on the test organisms ranged from 1.25 to 40 mg/ml. The study concluded that the extracts of the mosses studied contain pharmacologically active constituents which may be responsible for their antimicrobial properties.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


Nova ◽  
2021 ◽  
Vol 19 (37) ◽  
pp. 121-134
Author(s):  
Lidia Po Catalao Dionisio ◽  
Alejandro Manuel Labella ◽  
María Palma ◽  
Juan José Borrego

Aim. In vitro antimicrobial activities of seven wines (5 reds and 2 whites) from the Douro region (Iberian Peninsule) against eleven clinical strains of Helicobacter pylori were evaluated. Methods. The disk diffusion method, using Columbia Agar supplemented with horse blood (CAB), were used to determine the antimicrobial properties of some wine components against H. pylori strains. Potential interactions of antioxidants contained in the wines and two antimicrobials (amoxicillin and metronidazole) were studied by the disk diffusion method. Results. All the tested strains showed growth in CAB supplemented with 9% of the tested wines but none of them grew in media supplemented with 45% and 67.5% of wine. Similarly, all the tested strains grew in media with the concentration of proanthocyanidins present in the different types of the studied wines. The Minimal Inhibitory Concentration (MIC) values of the wine antioxidant components tested (benzoic acid, catechin, quercetin, and resveratrol) indicate that resveratrol was the most powerful inhibitory substance against H. pylori. An effect of potentiation between amoxicillin and metronidazole and the antioxidants tested was also established. The interaction of amoxicillin and resveratrol or metronidazole and catechin increased the antimicrobial activity against H. pylori. Conclusions. The results obtained suggested a potential role of resveratrol as a chemopreventive agent for H. pylori infection.


2014 ◽  
Vol 6 (3) ◽  
pp. 276-281 ◽  
Author(s):  
Tiwalade Adeyemi ADENIYI ◽  
Peter A. ADEONIPEKUN ◽  
Elizabeth A. OMOTAYO

In order to evaluate the medicinal value of notorious sedge weeds, three species:Cyperus esculentus, Cyperus rotundus and Mariscus alternifolius were investigated for their phytochemical constituents and antimicrobial properties. Preliminary qualitative phytochemical constituents and in vitro antimicrobial activities were evaluated against four fungi species: Aspergillus niger, Aspergillus fumigatus, Penicillium chrysogenum and Candida albicans, and three bacteria species: Escherichia coli,Salmonella typhi and Staphylococcus aureus. Two solvents, water and ethanol, were used to produce the extracts and were screened for their antimicrobial activity. Antimicrobial activity evaluation of the extracts against pathogens was carried out at 100 mg/ml concentration by Disc Diffusion method for fungi, Disc Diffusion and Agar Well Diffusion methods for bacteria. Observed activities were related to standard antibiotics, antifungal and antibacterial, which served as controls. Phytochemically, the plant extracts showed the presence of carbohydrates, flavonoids, ketose sugars, steroids, reducing sugars and tannins. The ethanolic extract of C. rotundus exhibited the highest activity against A. niger, E. coli and S. aureus. No extract was active against C. albicans. From these findings, it was concluded that C. rotundus is a potential source of bioactive compounds for new drugs upon isolation and purification for treating infections caused by these pathogens.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Junpeng Li ◽  
Shuping Hu ◽  
Wei Jian ◽  
Chengjian Xie ◽  
Xingyong Yang

AbstractAntimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 137
Author(s):  
Xinzhen Fan ◽  
L’Hocine Yahia ◽  
Edward Sacher

Microbes, including bacteria and fungi, easily form stable biofilms on many surfaces. Such biofilms have high resistance to antibiotics, and cause nosocomial and postoperative infections. The antimicrobial and antiviral behaviors of Ag and Cu nanoparticles (NPs) are well known, and possible mechanisms for their actions, such as released ions, reactive oxygen species (ROS), contact killing, the immunostimulatory effect, and others have been proposed. Ag and Cu NPs, and their derivative NPs, have different antimicrobial capacities and cytotoxicities. Factors, such as size, shape and surface treatment, influence their antimicrobial activities. The biomedical application of antimicrobial Ag and Cu NPs involves coating onto substrates, including textiles, polymers, ceramics, and metals. Because Ag and Cu are immiscible, synthetic AgCu nanoalloys have different microstructures, which impact their antimicrobial effects. When mixed, the combination of Ag and Cu NPs act synergistically, offering substantially enhanced antimicrobial behavior. However, when alloyed in Ag–Cu NPs, the antimicrobial behavior is even more enhanced. The reason for this enhancement is unclear. Here, we discuss these results and the possible behavior mechanisms that underlie them.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3170
Author(s):  
Wafaa M. Elkady ◽  
Mariam H. Gonaid ◽  
Miriam F. Yousif ◽  
Mahmoud El-Sayed ◽  
Hind A. N. Omar

Active components from natural sources are the current focus in most pharmacological research to provide new therapeutic agents for clinical use. Essential oils from the Pinus species have been traditionally used in medicine. This study aimed to investigate the chemical profile of two Pinus species, Pinus halepensis L. and Pinus pinea Mill, from different altitudes in Libya and study the effect of environmental conditions on the biological activities of essential oils. A clevenger apparatus was used to prepare the essential oils by hydrodistillation. Analyses were done using GC/MS. Anthelmintic and antimicrobial activities were tested against the earthworm Allolobophora caliginosa, gram-positive bacteria, gram-negative bacteria, and fungi. Different chemical profiles were observed among all tested essential oils, and terpenes were the most dominant class. All studied essential oils from the Pinus species exhibited a remarkable anthelmintic activity compared to the standard piperazine citrate drug. Pinus halepensis from both altitudes showed broad-spectrum antimicrobial activity against all tested microorganisms, while Pinus pinea was effective against only Escherichia coli. From these findings, one can conclude that there are variations between studied species. The essential oil compositions are affected by environmental factors, which consequently affect the anthelmintic and antimicrobial activity.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


Proceedings ◽  
2020 ◽  
Vol 66 (1) ◽  
pp. 9
Author(s):  
Yoram Gerchman

Plants have been explored and used as sources for antimicrobial extract and compounds for many years, but galls—specialized structures forms on such by diversity of organisms—have been explored much less. Aphid galls host many insects in closed, humid and sugar rich environments for long periods. We have tested the antimicrobial properties of Slavum wertheimae aphid galls on Pistacia atlantica. Secondary metabolites were extracted from leaves and galls with organic solvents, and essential oils with Clevenger, and tested by disk diffusion assay and volatile effect on bacteria and fungi, respectively. The results demonstrated that gall extracts/essential oils had much stronger activity against the diversity of bacteria and fungi. The large diversity of galls suggest they could be explored as source for novel compounds.


2013 ◽  
pp. 171-183 ◽  
Author(s):  
Emilija Ivanova ◽  
Natalija Atanasova-Pancevska ◽  
Dzoko Kungulovski

It is well known that essential oils possess significant antimicrobial activity. This study was conducted to estimate the antimicrobial activity of various types of Biokill, a laboratory produced solution composed of several essential oils (Biokill dissolved in 96% ethanol; Biokill 96% further dissolved in DMSO; Biokill dissolved in 70% ethanol and Biokill 70% further dissolved in DMSO). The antimicrobial activity was evaluated against five selected fungal strains, Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763, Aspergillus niger I.N. 1110, Aspergillus sojae CCF and Penicillium spp. FNS FCC 266. A variation of the microtiter plate-based antimicrobial assay was used in order to assess the antimicrobial activity of the solutions. By applying this assay minimal inhibitory concentrations (MIC) of the Biokill solutions were determined for each strain of the selected test microorganisms. The results demonstrated that all variations of Biokill showed antimicrobial activity at concentrations lower than 2.5?g/mL. Biokill 70% further dissolved in DMSO showed the best antimicrobial properties against all the selected strains with MICs less than 1.25?g/mL. These results indicated that Biokill could find application in the pharmaceutical industry, in food preservation and conservation, in the prevention and treat?ment of plants infected by certain phytopathogens, etc.


2013 ◽  
Vol 14 (5) ◽  
pp. 924-929 ◽  
Author(s):  
Reena Kulshrestha ◽  
J Kranthi ◽  
P Krishna Rao ◽  
Feroz Jenner ◽  
V Abdul Jaleel ◽  
...  

ABSTRACT Aim The present study was conducted to evaluate the efficacy of commercially available herbal toothpastes against the different periodontopathogens. Materials and methods Six herbal toothpastes that were commonly commercially available were included in the study. Colgate herbal, Babool, Meswak, Neem active, Dabur red toothpastes were tested for the study whereas sterile normal saline was used as control. Antimicrobial efficacies of dentifrices were evaluated against Streptococcus mutans and Actinobacillus actinomycetemcomitans. The antimicrobial properties of dentifrices were tested by measuring the maximum zone of inhibition at 24 hours on the Mueller Hinton Agar media inoculated with microbial strain using disk diffusion method. Each dentifrice was tested at 100% concentration (full strength). Results The study showed that all dentifrices selected for the study were effective against the entire test organism but to varying degree. Neem active tooth paste gave a reading of 25.4 mm as the zone of inhibition which was highest amongst all of the test dentifrices. Colgate Herbal and Meswak dentifrices recorded a larger maximum zone of inhibition, measuring 23 and 22.6 mm respectively, compared to other toothpastes. All other dentifrices showed the zone of inhibition to be between 17 and 19 mm respectively. Conclusion The antibacterial properties of six dentifrices were studied in vitro and concluded that almost all of the dentifrices available commercially had antibacterial properties to some extent to benefit dental health or antiplaque action. How to cite this article Jenner F, Jaleel VA, Kulshrestha R, Maheswar G, Rao PK, Kranthi J. Evaluating the Antimicrobial Activity of Commercially Available Herbal Toothpastes on Microorganisms Associated with Diabetes Mellitus. J Contemp Dent Pract 2013;14(5):924-929.


Sign in / Sign up

Export Citation Format

Share Document