scholarly journals Impact of Altitudinal Variation on the Phytochemical Profile, Anthelmintic and Antimicrobial Activity of Two Pinus Species

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3170
Author(s):  
Wafaa M. Elkady ◽  
Mariam H. Gonaid ◽  
Miriam F. Yousif ◽  
Mahmoud El-Sayed ◽  
Hind A. N. Omar

Active components from natural sources are the current focus in most pharmacological research to provide new therapeutic agents for clinical use. Essential oils from the Pinus species have been traditionally used in medicine. This study aimed to investigate the chemical profile of two Pinus species, Pinus halepensis L. and Pinus pinea Mill, from different altitudes in Libya and study the effect of environmental conditions on the biological activities of essential oils. A clevenger apparatus was used to prepare the essential oils by hydrodistillation. Analyses were done using GC/MS. Anthelmintic and antimicrobial activities were tested against the earthworm Allolobophora caliginosa, gram-positive bacteria, gram-negative bacteria, and fungi. Different chemical profiles were observed among all tested essential oils, and terpenes were the most dominant class. All studied essential oils from the Pinus species exhibited a remarkable anthelmintic activity compared to the standard piperazine citrate drug. Pinus halepensis from both altitudes showed broad-spectrum antimicrobial activity against all tested microorganisms, while Pinus pinea was effective against only Escherichia coli. From these findings, one can conclude that there are variations between studied species. The essential oil compositions are affected by environmental factors, which consequently affect the anthelmintic and antimicrobial activity.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2403 ◽  
Author(s):  
R. Syafiq ◽  
S. M. Sapuan ◽  
M. Y. M. Zuhri ◽  
R. A. Ilyas ◽  
A. Nazrin ◽  
...  

Recently, many scientists and polymer engineers have been working on eco-friendly materials for starch-based food packaging purposes, which are based on biopolymers, due to the health and environmental issues caused by the non-biodegradable food packaging. However, to maintain food freshness and quality, it is necessary to choose the correct materials and packaging technologies. On the other hand, the starch-based film’s biggest flaws are high permeability to water vapor transfer and the ease of spoilage by bacteria and fungi. One of the several possibilities that are being extensively studied is the incorporation of essential oils (EOs) into the packaging material. The EOs used in food packaging films actively prevent inhibition of bacteria and fungi and have a positive effect on food storage. This work intended to present their mechanical and barrier properties, as well as the antimicrobial activity of anti-microbacterial agent reinforced starch composites for extending product shelf life. A better inhibition of zone of antimicrobial activity was observed with higher content of essential oil. Besides that, the mechanical properties of starch-based polymer was slightly decreased for tensile strength as the increasing of essential oil while elongation at break was increased. The increasing of essential oil would cause the reduction of the cohesion forces of polymer chain, creating heterogeneous matrix and subsequently lowering the tensile strength and increasing the elongation (E%) of the films. The present review demonstrated that the use of essential oil represents an interesting alternative for the production of active packaging and for the development of eco-friendly technologies.


2012 ◽  
Vol 7 (10) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Sarin Tadtong ◽  
Supatcha Suppawat ◽  
Anchalee Tintawee ◽  
Phanida Saramas ◽  
Suchada Jareonvong ◽  
...  

Antimicrobial activities of two blended essential oil preparations comprising lavender oil, petigrain oil, clary sage oil, ylang ylang oil and jasmine oil were evaluated against various pathogenic microorganisms. Both preparations showed antimicrobial activity in the agar disc diffusion assay against the Gram-positive bacteria, Staphylococcus aureus ATCC6538 and S. epidermidis isolated strain, the fungus, Candida albicans ATCC10231, and the Gram-negative bacterium, Escherichia coli ATCC25922, but showed no activity against Pseudomonas aeruginosa ATCC9027. The minimum inhibitory concentration (MIC) of these preparations was evaluated. By the broth microdilution assay, preparation 1, comprising lavender oil, clary sage oil, and ylang ylang oil (volume ratio 3:4:3), exhibited stronger antimicrobial activity than preparation 2, which was composed of petigrain oil, clary sage oil, and jasmine oil (volume ratio 3:4:3). Moreover, the sum of the fractional inhibitory concentrations (Σfic) of preparation 1 expressed a synergistic antimicrobial effect against the tested microorganisms (Σfic<1). The blended essential oil preparations, characterized for their components by GC/MS, contained linalyl acetate, and linalool as major components. Our experiments showed that the differential antimicrobial effect of either blended oil preparations or single/pure essential oils may be influenced by the amount of linalool and linalyl acetate, and the number of active components in either the blended preparations or single/pure essential oils. In addition, blended oil preparations expressed synergistic antimicrobial effect by the accumulation of active components such as linalool and linalyl acetate and combining active constituents of more than one oil.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 488
Author(s):  
Akintayo L. Ogundajo ◽  
Tolulope Ewekeye ◽  
Olubunmi J. Sharaibi ◽  
Moses S. Owolabi ◽  
Noura S. Dosoky ◽  
...  

Lannea egregia (Anacardiaceae) and Emilia sonchifolia (Asteraceae) are plants used in traditional medicine in southwestern Nigeria. The essential oils from the leaves of L. egregia and E. sonchifolia were obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry. Both essential oils were dominated by sesquiterpenoids. The major components in L. egregia leaf essential oil were α-panasinsen (34.90%), (E)-caryophyllene (12.25%), α-copaene (11.39%), and selina-4,11-diene (9.29%), while E. sonchifolia essential oil was rich in γ-himachalene (25.16%), (E)-caryophyllene (15.72%), and γ-gurjunene (8.58%). The essential oils were screened for antimicrobial activity against a panel of bacteria and fungi and displayed minimum inhibitory concentrations ranging from 156 μg/mL to 625 μg/mL. Based on these results, either L. egregia or E. sonchifolia essential oil may be recommended for exploration as complementary antibacterial or antifungal agents.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 695
Author(s):  
Jaroslaw Widelski ◽  
Konstantia Graikou ◽  
Christos Ganos ◽  
Krystyna Skalicka-Wozniak ◽  
Ioanna Chinou

As part of our ongoing research on phytoconstituents that can act as promising antimicrobial agents, the essential oils of nine selected Apiaceae plants, cultivated in Poland, were studied. The volatiles of the aerial parts with fruits (herba cum fructi) of Silaum silaus, Seseli devenyense, Seseli libanotis,Ferula assa-foetida, Glehnia littoralis and Heracleum dulce, in addition to the fruits (fructi) of Torilis japonica and Orlaya grandiflora as well as of the aerial parts (herba) of Peucedanum luxurians were investigated through Gas Chromatography–Mass Spectrometry to identify more than 60 different metabolites. The essential oils from S. devenyense, H. dulce, T. japonica and P. luxurians are reported for the first time. All examined species were also assayed for their antimicrobial activities against several human pathogenic Gram-positive and -negative bacteria and fungi. The species H. dulce, S. devenyense and S. libanotis exerted the strongest antimicrobial activity, mostly against Gram-positive bacteria strains (MIC values 0.90–1.20 mg/mL). To the best of our knowledge, this is the first attempt to determine the antimicrobial activity of the above Apiaceae species.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Junpeng Li ◽  
Shuping Hu ◽  
Wei Jian ◽  
Chengjian Xie ◽  
Xingyong Yang

AbstractAntimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.


Proceedings ◽  
2020 ◽  
Vol 66 (1) ◽  
pp. 9
Author(s):  
Yoram Gerchman

Plants have been explored and used as sources for antimicrobial extract and compounds for many years, but galls—specialized structures forms on such by diversity of organisms—have been explored much less. Aphid galls host many insects in closed, humid and sugar rich environments for long periods. We have tested the antimicrobial properties of Slavum wertheimae aphid galls on Pistacia atlantica. Secondary metabolites were extracted from leaves and galls with organic solvents, and essential oils with Clevenger, and tested by disk diffusion assay and volatile effect on bacteria and fungi, respectively. The results demonstrated that gall extracts/essential oils had much stronger activity against the diversity of bacteria and fungi. The large diversity of galls suggest they could be explored as source for novel compounds.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Kamel Msaada ◽  
Nidhal Salem ◽  
Olfa Bachrouch ◽  
Slim Bousselmi ◽  
Sonia Tammar ◽  
...  

The aim of this study was to determine the chemical variability of wormwood extracts as affected by the growing region. Antioxidant and antimicrobial activities were also investigated. The essential oil composition variability ofA. absinthiumL. aerial parts collected from four different Tunisian regions was assessed by gas chromatography (GC/FID) and by gas chromatography mass spectrometry (GC/MS). In addition, total polyphenols, flavonoids, and condensed tannins as well as antioxidant, antibacterial, and antifungal activities of methanolic extract and essential oils were undertaken. Chromatographic analysis of wormwood essential oils showed the predominance of monoterpene hydrocarbons represented mainly by chamazulene. RP-HPLC analysis of wormwood methanolic extract revealed the predominance of phenolic acids. Antiradical activity was region-dependant and the methanolic extract of Bou Salem region has the strongest activity (CI50=9.38±0.82 µg/mL). Concerning the reducing power, the methanolic extract of Bou Salem, Jérissa, and Boukornine regions was more active than the positive control. Obtained results of antimicrobial activities showed that wormwood essential oil is endowed with important antibacterial activity which was strongly related to the organoleptic quality of oil which appeared strongly region-dependant.A. absinthiumL. EOs investigated are quite interesting from a pharmaceutical standpoint because of their biological activities.


2013 ◽  
pp. 171-183 ◽  
Author(s):  
Emilija Ivanova ◽  
Natalija Atanasova-Pancevska ◽  
Dzoko Kungulovski

It is well known that essential oils possess significant antimicrobial activity. This study was conducted to estimate the antimicrobial activity of various types of Biokill, a laboratory produced solution composed of several essential oils (Biokill dissolved in 96% ethanol; Biokill 96% further dissolved in DMSO; Biokill dissolved in 70% ethanol and Biokill 70% further dissolved in DMSO). The antimicrobial activity was evaluated against five selected fungal strains, Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763, Aspergillus niger I.N. 1110, Aspergillus sojae CCF and Penicillium spp. FNS FCC 266. A variation of the microtiter plate-based antimicrobial assay was used in order to assess the antimicrobial activity of the solutions. By applying this assay minimal inhibitory concentrations (MIC) of the Biokill solutions were determined for each strain of the selected test microorganisms. The results demonstrated that all variations of Biokill showed antimicrobial activity at concentrations lower than 2.5?g/mL. Biokill 70% further dissolved in DMSO showed the best antimicrobial properties against all the selected strains with MICs less than 1.25?g/mL. These results indicated that Biokill could find application in the pharmaceutical industry, in food preservation and conservation, in the prevention and treat?ment of plants infected by certain phytopathogens, etc.


Sign in / Sign up

Export Citation Format

Share Document