scholarly journals Effects of isometric exercise using biofeedback on maximum voluntary isometric contraction, pain, and muscle thickness in patients with knee osteoarthritis

2015 ◽  
Vol 27 (1) ◽  
pp. 149-153 ◽  
Author(s):  
Yun Lak Choi ◽  
Bo Kyung Kim ◽  
Yong Pil Hwang ◽  
Ok Kon Moon ◽  
Wan Suk Choi
2014 ◽  
Vol 32 (3) ◽  
pp. 236-241 ◽  
Author(s):  
Ralph Plaster ◽  
Wellington Bueno Vieira ◽  
Flávia Alves Duarte Alencar ◽  
Eduardo Yoshio Nakano ◽  
Richard Eloin Liebano

Objective To compare the immediate effects of electroacupuncture and manual acupuncture on pain, mobility and muscle strength in patients with knee osteoarthritis. Methods Sixty patients with knee osteoarthritis, with a pain intensity of ≥2 on the pain Numerical Rating Scale, were included. The patients were randomised into two groups: manual acupuncture and electroacupuncture. Pain intensity, degree of dysfunction (Timed Up and Go (TUG) test), maximal voluntary isometric contraction and pressure pain threshold were assessed before and after a single session of manual acupuncture or electroacupuncture treatments. Results Both groups showed a significant reduction in pain intensity (p<0.001) and time to run the TUG test after the acupuncture treatment (p=0.005 for the manual acupuncture group and p=0.002 for the electroacupuncture group). There were no differences between the groups regarding pain intensity (p=0.25), TUG test (p=0.70), maximum voluntary isometric contraction (p=0.43) or pressure pain threshold (p=0.27). Conclusions This study found no difference between the immediate effects of a single session of manual acupuncture and electroacupuncture on pain, muscle strength and mobility in patients with knee osteoarthritis. Trial Registration Number RBR-9TCN2X.


2020 ◽  
Vol 29 (7) ◽  
pp. 984-992 ◽  
Author(s):  
Robert S. Thiebaud ◽  
Takashi Abe ◽  
Jeremy P. Loenneke ◽  
Tyler Garcia ◽  
Yohan Shirazi ◽  
...  

Context: Blood flow restriction (BFR) increases muscle size and strength when combined with low loads, but various methods are used to produce this stimulus. It is unclear how using elastic knee wraps can impact acute muscular responses compared with using nylon cuffs, where the pressure can be standardized. Objective: Investigate how elastic knee wraps compare with nylon cuffs and high-load (HL)/low-load (LL) resistance exercise. Design: A randomized cross-over experimental design using 6 conditions combined with unilateral knee extension. Setting: Human Performance Laboratory. Participants: A total of 9 healthy participants (males = 7 and females = 2) and had an average age of 22 (4) years. Intervention: LL (30% of 1-repetition maximum [1-RM]), HL (70% 1-RM), BFR at 40% of arterial occlusion pressure (BFR-LOW), BFR at 80% of arterial occlusion pressure (BFR-HIGH), elastic knee wraps stretched by 2 in (PRACTICAL-LOW), and elastic knee wraps stretched to a new length equivalent to 85% of thigh circumference (PRACTICAL-HIGH). BFR and practical conditions used 30% 1-RM. Main Outcome Measures: Muscle thickness, maximum voluntary isometric contraction, and electromyography amplitude. Bayesian statistics evaluated differences in changes between conditions using the Bayes factor (BF10), and median and 95% credible intervals were reported from the posterior distribution. Results: Total repetitions completed were greater for BFR-LOW versus PRACTICAL-HIGH (BF10 = 3.2, 48.6 vs 44 repetitions) and greater for PRACTICAL-LOW versus BFR-HIGH (BF10 = 717, 51.8 vs 36.3 repetitions). Greater decreases in changes in maximum voluntary isometric contraction were found in PRACTICAL-HIGH versus HL (BF10 = 1035, ∼103 N) and LL (BF10 = 45, ∼66 N). No differences in changes in muscle thickness were found between LL versus PRACTICAL-LOW/PRACTICAL-HIGH conditions (BF10 = 0.32). Greater changes in electromyography amplitude were also found for BFR-LOW versus PRACTICAL-HIGH condition (BF10 = 6.13, ∼12%), but no differences were noted between the other BFR conditions. Conclusions: Overall, elastic knee wraps produce a more fatiguing stimulus than LL or HL conditions and might be used as an alternative to pneumatic cuffs that are traditionally used for BFR exercise.


2019 ◽  
Vol 25 (1) ◽  
pp. 40-44
Author(s):  
Cezar Augusto Souza Casarin ◽  
Rafael Ambrósio Battazza ◽  
Marco Aurélio Lamolha ◽  
Marcelo Martins Kalytczak ◽  
Fabiano Politti ◽  
...  

ABSTRACT Introduction: Although sodium bicarbonate (NaHCO3) supplementation has been shown to decrease fatigue and improve high-intensity exercise performance, the effects on maintenance of isometric contractions are not clear. Objective: To investigate the effect of NaHCO3 on the performance of individuals subjected to a fatigue protocol in an isometric exercise on the isokinetic dynamometer. Methods: Participants were 12 men in a randomized, double-blind, crossover, placebo-controlled trial. Sixteen minutes after the intake of 0.3 g/kg of body mass of NaHCO3 or placebo, the participants performed an isometric fatigue protocol of right knee extension exercises during eight minutes at 70% of maximum voluntary isometric contraction. The fatigue indicator was the time point at which torque was reduced to 50% of the initial value. The length of resistance was assessed by maintaining the task over 50% of the initial torque. Lactate/blood pH concentrations and rate of perceived exertion (RPE) and pain (RPP) indexes were analyzed. The RPE of the session was evaluated 30 minutes after the test. Results: Blood pH was higher in pre-protocol and in the fatigue indicator after NaHCO3 intake, as were the blood lactate concentrations in the fatigue indicator and at the end of the protocol (p<0.001). NaHCO3 supplementation increased the time to fatigue and lessened the rate of decline of isometric peak torque at the end of the protocol (p<0.001). RPE and RPP were smaller at the end of the protocol in the NaHCO3 condition, and the RPE of the session was diminished (p<0.001). Conclusion: NaHCO3 supplementation enhances steady isometric contraction performance and reduces the internal load. Level of Evidence II; Diagnostic studies - Investigation of an examination for diagnosis.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2197
Author(s):  
Chia-Chi Yang ◽  
Po-Ching Yang ◽  
Jia-Jin J. Chen ◽  
Yi-Horng Lai ◽  
Chia-Han Hu ◽  
...  

Since there is merit in noninvasive monitoring of muscular oxidative metabolism for near-infrared spectroscopy in a wide range of clinical scenarios, the present study attempted to evaluate the clinical usability for featuring the modulatory strategies of sternocleidomastoid muscular oxygenation using near-infrared spectroscopy in mild nonspecific neck pain patients. The muscular oxygenation variables of the dominant or affected sternocleidomastoid muscles of interest were extracted at 25% of the maximum voluntary isometric contraction from ten patients (5 males and 5 females, 23.6 ± 4.2 years) and asymptomatic individuals (6 males and 4 females, 24.0 ± 5.1 years) using near-infrared spectroscopy. Only a shorter half-deoxygenation time of oxygen saturation during a sternocleidomastoid isometric contraction was noted in patients compared to asymptomatic individuals (10.43 ± 1.79 s vs. 13.82 ± 1.42 s, p < 0.001). Even though the lack of statically significant differences in most of the muscular oxygenation variables failed to refine the definite pathogenic mechanisms underlying nonspecific neck pain, the findings of modulatory strategies of faster deoxygenation implied that near-infrared spectroscopy appears to have practical potential to provide relevant physiological information regarding muscular oxidative metabolism and constituted convincing preliminary evidences of the adaptive manipulations rather than pathological responses of oxidative metabolism capacity of sternocleidomastoid muscles in nonspecific neck patients with mild disability.


2013 ◽  
Vol 115 (2) ◽  
pp. 167-175 ◽  
Author(s):  
H. S. Palmer ◽  
A. K. Håberg ◽  
M. S. Fimland ◽  
G. M. Solstad ◽  
V. Moe Iversen ◽  
...  

Strength training enhances muscular strength and neural drive, but the underlying neuronal mechanisms remain unclear. This study used magnetic resonance imaging (MRI) to identify possible changes in corticospinal tract (CST) microstructure, cortical activation, and subcortical structure volumes following unilateral strength training of the plantar flexors. Mechanisms underlying cross-education of strength in the untrained leg were also investigated. Young, healthy adult volunteers were assigned to training ( n = 12) or control ( n = 9) groups. The 4 wk of training consisted of 16 sessions of 36 unilateral isometric plantar flexions. Maximum voluntary isometric contraction torque was tested pre- and posttraining. MRI investigation included a T1-weighted scan, diffusion tensor imaging and functional MRI. Probabilistic fiber tracking of the CST was performed on the diffusion tensor imaging images using a two-regions-of-interest approach. Fractional anisotropy and mean diffusivity were calculated for the left and right CST in each individual before and after training. Standard functional MRI analyses and volumetric analyses of subcortical structures were also performed. Maximum voluntary isometric contraction significantly increased in both the trained and untrained legs of the training group, but not the control group. A significant decrease in mean diffusivity was found in the left CST following strength training of the right leg. No significant changes were detected in the right CST. No significant changes in cortical activation were observed following training. A significant reduction in left putamen volume was found after training. This study provides the first evidence for strength training-related changes in white matter and putamen in the healthy adult brain.


1999 ◽  
Vol 87 (5) ◽  
pp. 1758-1767 ◽  
Author(s):  
Samuel C. K. Lee ◽  
Cara N. Becker ◽  
Stuart A. Binder-Macleod

Stimulation trains that exploit the catchlike property [catchlike-inducing trains (CITs)] produce greater forces and rates of rise of force than do constant-frequency trains (CFTs) during isometric contractions and isovelocity movements. This study examined the effect of CITs during isotonic contractions in healthy subjects. Knee extension was electrically elicited against a load of 10% of maximum voluntary isometric contraction. The stimulation intensity was set to produce 20% of maximum voluntary isometric contraction. The muscle was tested before and after fatigue with a 6-pulse CFT and 6-pulse CITs that contained an initial doublet, triplet, or quadruplet. For prefatigue responses, the greatest isotonic performance was produced by CITs with initial doublets. When the muscles were fatigued, triplet CITs were best. CITs produce greater excursion, work, peak power, and average power than do CFTs, because CITs produced more rapid rates of rise of force. Faster rates of rise of force enabled the preload on the muscle to be exceeded earlier during the stimulation train.


Sign in / Sign up

Export Citation Format

Share Document