scholarly journals Fluoride Varnishes against Dental Erosion Caused by Soft Drink Combined with Pediatric Liquid Medicine

2017 ◽  
Vol 28 (4) ◽  
pp. 482-488 ◽  
Author(s):  
Adílis Kalina Alexandria ◽  
Ana Maria Gondim Valença ◽  
Lúcio Mendes Cabral ◽  
Lucianne Cople Maia

Abstract The present study evaluated the effect of NaF and CPP-ACP/NaF varnishes to reduce erosion produced by soft drink (SD) combined or not with pediatric liquid medicine. Enamel specimens were pre-treated with fluoride varnish, according to the following groups: NaF varnish (Duraphat®) or CPP-ACP/NaF varnish (MI varnishTM). Two types of erosive cycles were made: by soft drink erosion (SDE) or by pediatric liquid medicine plus soft drink erosion (PLM/SDE). Bovine enamel specimens were randomly assigned in six groups (n=10): G1=NaF + SDE; G2=CPP-ACP/NaF + SDE; G3=Distilled and deionized (DD) water + SDE; G4=NaF + PLM/SDE; G5=CPP-ACP/NaF + PLM/SDE and G6=DD water + PLM/SDE. Before treatments, the sample surface was divided in two areas (unexposed area-UA and exposed area-EA). The specimens were evaluated by 3D non-contact profilometry technique to determinate tooth structure loss (TSL) and surface roughness (Sa). Scanning electron microscopy (SEM) analysis was also performed. After SDE, G2 presented the lowest TSL values compared to G3 (p=0.008). G1 and G2 did not differ between them (p=0.203) and no groups differed among them despite Sa. Regarding TSL and Sa, G4 and G5 differed from G6 (p=0.0001), but not between them (p=1.00). Examining 3D and SEM images, the greatest differences between UA and EA were observed for G3 and G6. CPP-ACP/NaF varnish seems to be a promising treatment to reduce enamel loss from the erosion produced by a soft drink. Both varnishes also showed capacity to reduce TSL and Sa after erosion by soft drink combined to pediatric liquid medicine.

2010 ◽  
Vol 21 (4) ◽  
pp. 337-345 ◽  
Author(s):  
Carolina Paes Torres ◽  
Michelle Alexandra Chinelatti ◽  
Jaciara Miranda Gomes-Silva ◽  
Fátima Aparecida Rizóli ◽  
Maria Angélica Hueb de Menezes Oliveira ◽  
...  

This study evaluated the influence of a cola-type soft drink and a soy-based orange juice on the surface and subsurface erosion of primary enamel, as a function of the exposure time. Seventy-five primary incisors were divided for microhardness test (n=45) or scanning electron microscopy (SEM) analysis (n=30). The specimens were randomly assigned to 3 groups: 1 - artificial saliva (control); 2 - cola-type soft drink; and 3 - soy-based orange juice. Immersion cycles in the beverages were undertaken under agitation for 5 min, 3 times a day, during 60 days. Surface microhardness was measured at 7, 15, 30, 45 and 60 days. After 60 days, specimens were bisected and subsurface microhardness was measured at 30, 60, 90, 120, 150 and 200 µm from the surface exposed. Data were analyzed by ANOVA and Tukey’s test (a=0.05). Groups 2 and 3 presented similar decrease of surface microhardness. Regarding subsurface microhardness, group 2 presented the lowest values. SEM images revealed that after 60 days the surfaces clearly exhibited structural loss, unlike those immersed in artificial saliva. It may be concluded that erosion of the surfaces exposed to the cola-type soft drink was more accentuated and directly proportional to the exposure time.


2020 ◽  
Vol 31 (2) ◽  
pp. 164-170 ◽  
Author(s):  
Fernanda Michel Tavares Canto ◽  
Adílis Kalina Alexandria ◽  
Thiago Isidro Vieira ◽  
Isabella Barbosa dos Santos Justino ◽  
Lúcio Mendes Cabral ◽  
...  

Abstract The aim of this study was to compare the effects of a single application of a new calcium mesoporous silica nanoparticle (Ca2+-MSN) versus other calcium and/or fluoride products against dental erosion. Enamel blocks were half-covered and assigned to six groups (n = 10): Ca2+-MSNs; casein phosphopeptide-amorphous calcium phosphate mousse (CPP-ACP); CPP-ACP/F− (900 ppm F−); titanium tetrafluoride (TiF4 1%); sodium fluoride (NaF 1.36%); and Milli-Q® water (negative control). A single application for each product was completed on the exposed areas of the blocks and were submitted to an erosive challenge. Differences in volumetric roughness (Sa), and tooth structure loss (TSL) by use of three-dimensional noncontact optical profilometry were evaluate. Scanning electron microscopy (SEM) was performed. Analysis of variance and Tukey’s test for Sa and the Kruskal-Wallis and Mann-Whitney U tests (p< 0.05) for TSL, respectively. Results: When evaluating Sa, all products presented differences in roughness when compared with the control group (p< 0.05) but not with each other (p > 0.05). However, when analyzing the TSL, it was observed that Ca2+-MSNs, TiF4, and NaF were more effective in preventing dental erosion versus CPP-ACP, CPP-ACP/F−, and Milli-Q® water (p< 0.05). In the SEM images, the negative control presented the worst loss of dental structure, with more porous enamel. Ca2+-MSNs were as effective as TiF4 and NaF to reduce the tooth structure loss.


2021 ◽  
Vol 324 ◽  
pp. 87-93
Author(s):  
Mohamed Adel ◽  
Abdel Hady A. Abdel-Wahab ◽  
Ahmed Abdel-Mawgood ◽  
Ahmed Osman Egiza

Graphene oxide (GO) is an oxidized nanosheets of graphite with a 2D planar structure. GO could be readily complexed with bio-entities as it possesses many oxygen-containing functionalities on its surface. The preparation process is fast, easy, and cost-effective. It was prepared using modified Hummers’ method in acidic solution as a primary solvent and potassium permanganate as an oxidizing agent. Afterwards, it was successfully characterized by FTIR, UV-visible spectroscopy, as well as XRD and Raman spectroscopy, and finally, SEM analysis. It was observed that the formed GO is mainly composed of carbon and oxygen elements rich in oxygen functional groups. Furthermore, the existence of (001) plane in XRD interprets the complete oxidation of graphite with d-spacing 9 Å. Moreover, Raman spectroscopy displayed the sp3 carbon hybridization, besides, the ID/IG ratio is found to be 0.84, which confirms the disorder between graphene oxide layers. The SEM images also pointed out that graphene oxide sheets were regularly stacked together as flake-like structures. Accordingly, the richness of oxygen-containing functionalities was confirmed. Hence, it is appropriate to be used as a base transducer for biosensing applications.


2021 ◽  
Author(s):  
Lethycia Almeida Santos ◽  
Tatiana Martini ◽  
João Victor Frazão Câmara ◽  
Fabiana Navas Reis ◽  
Adriana de Cássia Ortiz ◽  
...  

The effect of solutions and gels containing a sugarcane-derived cystatin (CaneCPI-5) on the protection against enamel and dentin erosion in vitro was evaluated. Bovine enamel and dentin specimens were divided into two groups (n=135 and 153/group for enamel and dentin, respectively) that were treated with solutions or chitosan gels containing 0.1 or 0.25 mg/ml CaneCPI-5. The positive controls for solutions and gels were Elmex Erosion Protection™ solution and NaF gel (12,300 ppm F), respectively. Deionized water and chitosan gel served as controls, respectively. The solutions were first applied on the specimens for 1 min and the gels for 4 min. Stimulated saliva was collected from 3 donors and used to form a 2 h acquired pellicle on the specimens. Then, the specimens were submitted to an erosive pH cycling protocol 4 times/day for 7 days (0.1% citric acid pH 2.5/90s, artificial saliva/2h, artificial saliva overnight). The solutions and gels were applied again during pH cycling, 2 times/day for 1 min and 4 min, respectively, after the first and last erosive challenges. Enamel and dentin losses (µm) were assessed by contact profilometry. Data were analyzed by 2-way ANOVA and Tukey´s test (p <0.05). All the treatments significantly reduced enamel and dentin loss in comparison with controls. Both CaneCPI-5 concentrations had a similar protective effect against enamel erosion, but only the higher concentration was as effective against dentin erosion as the positive control. Regarding the vehicles, only the 0.1 mg/ml gel performed worse than the positive control for dentin. CaneCPI-5 reduced enamel and dentin erosion to a similar extent as the fluoride-containing vehicles. However, dentin requires higher CaneCPI-5 concentrations, in the case of gels. Solutions or gels containing CaneCPI-5 might be a new approach to protect against dental erosion.


2015 ◽  
Vol 05 (03) ◽  
pp. 80-86 ◽  
Author(s):  
Koji Watanabe ◽  
Toshiko Tanaka ◽  
Kenshi Maki ◽  
Hideaki Nakashima ◽  
Shigeru Watanabe

2020 ◽  
Vol 82 (11) ◽  
pp. 2415-2424
Author(s):  
S. Mokhtari ◽  
N. Dokhan ◽  
S. Omeiri ◽  
B. Berkane ◽  
M. Trari

Abstract The hematite (α-Fe2O3) nanostructures were synthesized by thermal oxidation of metal at 500 °C under atmospheric pressure. We studied the effect of the electrochemical pretreatment of the substrate before calcinations and its impact on the morphology, crystalline structure, lattice microstructural, and optical properties of α-Fe2O3. Uniform nanosheets were observed on the sample surface after calcination; their dimension and morphology were accentuated by the pretreatment, as confirmed by the SEM images. The characteristics of the nanostructures, analyzed by X-ray diffraction (XRD), revealed a rhombohedral symmetry with the space group R-3c and lattice constants: a = 0.5034 nm and c = 1.375 nm. The average crystallite size and strain, determined from the Williamson-Hall (W-H) plot, showed substantial variations after the substrate pretreatment. The Raman spectroscopy confirmed the changes in the crystal properties of the hematite submitted to pretreatment. The diffuse reflectance allowed to evaluate the optical gap which lies between 1.2 and 1.97 eV, induced by the electrochemical processing. The photocatalytic activity of α-Fe2O3 films was assessed by the degradation of methylene blue (MB) under LED light; 15% enhancement of the degradation for the pretreated specimens was noticed.


Author(s):  
Dalia Abdel Hamid ◽  
Amal Esawi ◽  
Inas Sami ◽  
Randa Elsalawy

Adhesively-bonded resin composites have the advantage of conserving sound tooth structure with the potential for tooth reinforcement, while at the same time providing an aesthetically acceptable restoration. However, no composite material has been able to meet both the functional needs of posterior restorations and the superior aesthetics required for anterior restoration. In an attempt to develop a dental resin composite that had the mechanical strength of hybrid composite materials and the superior polish and gloss retention associated with microfilled materials, nanofilled resin composites have been introduced in the market. Although nanofillers are the most popular fillers utilized in current visible light-activated dental resin composites and are claimed to be the solution for the most challenging material limitations as a universal restorative material, the mechanisms by which these fillers influence the resin composite properties are not well explained. In this study, some physical and mechanical properties of a nanofilled resin composite containing 60 vol. % zirconia and silica fillers were evaluated and compared to those of a microhybrid resin composite of the same composition. The nanofilled resin composite was found to have equivalent polymerization shrinkage and depth of cure to the microhybrid material but a slightly lower degree of conversion and density. Regarding mechanical behaviour, although the nanocomposite was found to exhibit significantly higher wear resistance, and equivalent flexural strength, its indentation modulus and nanohardness were slightly lower. Field-emission scanning electron microscopy (FE-SEM) analysis was conducted in order to evaluate the microstructure and to obtain a better understanding of the effect of the nanofillers on the behaviour of the nanocomposite.


2010 ◽  
Vol 21 (4) ◽  
pp. 332-336 ◽  
Author(s):  
Cecilia Pedroso Turssi ◽  
Danielle Furtado Messias ◽  
Silmara Milori Corona ◽  
Mônica Campos Serra

This study ascertained whether under dental erosion models that closely mimics the real-life situation enamel and root dentin from bovine origin would be reliable substitutes for human counterparts. Through a 2x2 crossover design, in a first trial, 14 volunteers wore a palatal device containing slabs of bovine and human enamel. Half of the participants ingested (4x daily, for 10 days) orange juice first, crossing over to mineral water, while the remainder received the reverse sequence. In a second trial, volunteers wore devices with slabs of bovine and human root dentin. Except for the duration of each intraoral phase, which lasted 2 rather 10 days, the experiment with root dentin run exactly as for enamel. Dental substrates were analyzed for surface microhardness. Two-way ANOVAs (α=0.05) indicated no difference between the microhardness values recorded for human and bovine enamel (p=0.1350), but bovine root dentin had lower microhardness compared to its human counterpart (p=0.0432). While bovine enamel can reliably substitute its human counterpart in in situ dental erosion models, bovine root dentin does not seem to be a viable alternative to the corresponding human tissue.


2013 ◽  
Vol 7 (1) ◽  
pp. 118-122 ◽  
Author(s):  
Christine Dirxen ◽  
Uwe Blunck ◽  
Saskia Preissner

Background:The development of ceramics during the last years was overwhelming. However, the focus was laid on the hardness and the strength of the restorative materials, resulting in high antagonistic tooth wear. This is critical for patients with bruxism.Objectives:The purpose of this study was to evaluate the clinical performance of the new double hybrid material for non-invasive treatment approaches.Material and Methods:The new approach of the material tested, was to modify ceramics to create a biomimetic material that has similar physical properties like dentin and enamel and is still as strong as conventional ceramics.Results:The produced crowns had a thickness ranging from 0.5 to 1.5 mm. To evaluate the clinical performance and durability of the crowns, the patient was examined half a year later. The crowns were still intact and soft tissues appeared healthy and this was achieved without any loss of tooth structure.Conclusions:The material can be milled to thin layers, but is still strong enough to prevent cracks which are stopped by the interpenetrating polymer within the network. Depending on the clinical situation, minimally- up to non-invasive restorations can be milled.Clinical Relevance:Dentistry aims in preservation of tooth structure. Patients suffering from loss of tooth structure (dental erosion, Amelogenesis imperfecta) or even young patients could benefit from minimally-invasive crowns. Due to a Vickers hardness between dentin and enamel, antagonistic tooth wear is very low. This might be interesting for treating patients with bruxism.


Sign in / Sign up

Export Citation Format

Share Document