scholarly journals Effect of anaerobic bovine colostrum fermentation on bacteria growth inhibition

2016 ◽  
Vol 46 (12) ◽  
pp. 2152-2157 ◽  
Author(s):  
Mara Helena Saalfeld ◽  
Daniela Isabel Brayer Pereira ◽  
Júlia de Souza Silveira Valente ◽  
Jéssica Lopes Borchardt ◽  
Christiano Fanck Weissheimer ◽  
...  

ABSTRACT: Efficient handling programs that provide high quality colostrum in adequate amounts to dairy farm calves are needed to assure their health and survival. Replacers (or milk substitutes) often become necessary when colostrum presents inadequate quality, or in order to break the cycle of infectious disease transmission. In this study we aimed to assess the effect of anaerobic fermentation processing (colostrum silage) on bacterial that represent interest to animal health. Colostrum samples were inoculated with cultures of Brucella abortus , Escherichia coli , Leptospira interrogans serovar Copenhageni , Mycobacterium bovis , Salmonella Enteritidis , Salmonella Typhimurium , Staphylococcus aureus , and Bacillus cereus and then subjected to anaerobic fermentation. On the first day, and every seven days until 30th days after fermentation, the samples were cultured and colony forming units counted. At seven days of fermentation, B. abortus , L. interrogans , and M. bovis were not detected. At 14th days of fermentation, E. coli , S. aureus , S. Enteritidis and S. Typhimurium were no longer detected. However, we were able to detect both lactic acid bacteria and B. cereus until 30th days of fermentation. From this study we suggested that anaerobic fermentation processing can inhibit important bacteria that cause economical losses for the cattle industry. The observations suggested that colostrum silage is a promising form to conserve bovine colostrum.

2019 ◽  
Author(s):  
Hannah Schubert ◽  
Katy Morley ◽  
Emma F. Puddy ◽  
Robert Arbon ◽  
Jacqueline Findlay ◽  
...  

AbstractLittle is known about the drivers of critically important antibacterial resistance in species with zoonotic potential present on farms (e.g. CTX-M □-lactamase-positive Escherichia coli). Here, we collected samples, monthly over a two-year period, on 53 dairy farms in the South West of England, and data for 610 variables concerning antimicrobial usage, management practices and meteorological factors. We detected E. coli resistant to amoxicillin, ciprofloxacin streptomycin and tetracycline, respectively, in 2754/4145 (66%), 263/4145 (6%), 1475/4145 (36%) and 2874/4145 (69%) of all samples from faecally contaminated sites. E. coli positive for blaCTX-M were detected in 224/4145 (5.4%) of samples. Multilevel, multivariable logistic regression showed antibiotic dry cow therapeutic choice (including use of cefquinome or framycetin) to be associated with increased odds of blaCTX-M positivity. Low temperature was associated with reduced odds of blaCTX-ME. coli positivity in samples and to reduced odds of finding E. coli resistant to each of the four test antibacterials. This was additional to the effect of temperature on total E. coli density. Furthermore, samples collected close to calves had increased odds of having E. coli resistance to each antibacterial or positive for blaCTX-M. Samples collected on pastureland had reduced odds of having E. coli resistant to amoxicillin or tetracycline, and being positive for blaCTX-M.ImportanceAntibacterial resistance poses a significant threat to human and animal health and global food security. Surveillance for resistance on farms is important for many reasons, including to track the impacts of interventions aimed at reducing the prevalence of resistance. In this epidemiological survey of dairy farm antibacterial resistance, we show that local temperature, as it changes over the course of a year, is associated with the prevalence of antibacterial resistant E. coli. Also, that prevalence of resistant E. coli is higher in indoor environments and in environments inhabited by young animals. These findings have profound implications for routine surveillance and for surveys carried out for research. They provide important evidence that sampling at a single time-point and/or single location on a farm is unlikely to be adequate to accurately determine the status of the farm with regard to the presence or number of resistant E. coli.


Author(s):  
Hannah Schubert ◽  
Katy Morley ◽  
Emma F. Puddy ◽  
Robert Arbon ◽  
Jacqueline Findlay ◽  
...  

Little is known about the drivers of critically important antibacterial resistance in species with zoonotic potential present on farms (e.g. CTX-M β-lactamase-positive Escherichia coli). We collected samples – monthly, between January 2017 and December 2018 - on 53 dairy farms in South West England along with data for 610 variables concerning antibacterial usage, management practices and meteorological factors. We detected E. coli resistant to amoxicillin, ciprofloxacin, streptomycin and tetracycline, respectively, in 2754/4145 (66%), 263/4145 (6%), 1475/4145 (36%) and 2874/4145 (69%) of all samples from faecally contaminated on-farm and near-farm sites. E. coli positive for blaCTX-M were detected in 224/4145 (5.4%) of samples. Multilevel, multivariable logistic regression showed antibacterial dry cow therapeutic choice (including use of cefquinome or framycetin) to be associated with higher odds of blaCTX-M positivity. Low average monthly ambient temperature was associated with lower odds of blaCTX-M E. coli positivity in samples and with lower odds of finding E. coli resistant to each of the four test antibacterials. This was additional to the effect of temperature on total E. coli density. Furthermore, samples collected close to calves had higher odds of having E. coli resistant to each antibacterial as well as positive for blaCTX-M. Samples collected on pastureland had lower odds of having E. coli resistant to amoxicillin or tetracycline as well as lower odds of being positive for blaCTX-M. Importance Antibacterial resistance poses a significant threat to human and animal health and global food security. Surveillance for resistance on farms is important for many reasons, including to track the impacts of interventions aimed at reducing the prevalence of resistance. In this longitudinal survey of dairy farm antibacterial resistance, we showed that local temperature - as it changes over the course of a year - was associated with the prevalence of antibacterial-resistant E. coli. We also showed that prevalence of resistant E. coli was lower on pastureland and higher in environments inhabited by young animals. These findings have profound implications for routine surveillance and for surveys carried out for research. They provide important evidence that sampling at a single time-point and/or single location on a farm is unlikely to be adequate to accurately determine the status of the farm regarding the presence of samples containing resistant E. coli.


Author(s):  
K. Betteridge ◽  
D. Costall

In spite of ragwort flea beetle (RFB) being present on a Dannevirke dairy farm, pastures were sprayed each winter to reduce ragwort density and limit the risk of ragwort poisoning of stock. The trial on this farm from June 1999 - October 2001, aimed to determine whether herbicide (H) impacted on RFB and how H and RFB each impacted on ragwort growth and persistence. RFBfree areas were created by spraying with insecticide (I). Effects of ragwort on animal health are also reported. High ester 2,4-D (H) boom-sprayed once only, in June 1999, killed most ragwort plants and reduced RFB larvae densities to low levels before the plants died. Once new ragwort established in treatment H, the plants became infested with RFB larvae. RFB larvae were suppressed by I resulting in ragwort density declining more slowly than in treatments where RFB were not suppressed. Insecticide treatments were stopped after 15 months and, at 24 months, ragwort could not be found within the trial area. Ragwort control was attributed to the cessation of herbicide spraying allowing the RFB population to reach a sufficient density to kill both small and large ragwort plants. Sub-clinical ragwort poisoning was found in livers of culled cows that had grazed on ragwort-dense pastures. Keywords: animal health, biological control, Longitarsus jacobaeae, pyrrolizidine alkaloids, ragwort, ragwort flea beetle, Senecio jacobaea


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eve Afonso ◽  
Rong Fu ◽  
Amaël Dupaix ◽  
Anne-Claude Goydadin ◽  
ZhongHua Yu ◽  
...  

AbstractAn increasing number of studies have found that the implementation of feeding sites for wildlife-related tourism can affect animal health, behaviour and reproduction. Feeding sites can favour high densities, home range overlap, greater sedentary behaviour and increased interspecific contacts, all of which might promote parasite transmission. In the Yunnan snub-nosed monkey (Rhinopithecus bieti), human interventions via provisioning monkeys at specific feeding sites have led to the sub-structuring of a group into genetically differentiated sub-groups. The fed subgroup is located near human hamlets and interacts with domesticated animals. Using high-throughput sequencing, we investigated Entamoeba species diversity in a local host assemblage strongly influenced by provisioning for wildlife-related tourism. We identified 13 Entamoeba species or lineages in faeces of Yunnan snub-nosed monkeys, humans and domesticated animals (including pigs, cattle, and domestic chicken). In Yunnan snub-nosed monkeys, Entamoeba prevalence and OTU richness were higher in the fed than in the wild subgroup. Entamoeba polecki was found in monkeys, pigs and humans, suggesting that this parasite might circulates between the wild and domestic components of this local social–ecological system. The highest proportion of faeces positive for Entamoeba in monkeys geographically coincided with the presence of livestock and humans. These elements suggest that feeding sites might indirectly play a role on parasite transmission in the Yunnan snub-nosed monkey. The implementation of such sites should carefully consider the risk of creating hotspots of disease transmission, which should be prevented by maintaining a buffer zone between monkeys and livestock/humans. Regular screenings for pathogens in fed subgroup are necessary to monitor transmission risk in order to balance the economic development of human communities dependent on wildlife-related tourism, and the conservation of the endangered Yunnan snub-nosed monkey.


2008 ◽  
Vol 58 (3) ◽  
pp. 537-547 ◽  
Author(s):  
B. R. Mohapatra ◽  
A. Mazumder

Development of efficient techniques to discriminate the sources of E. coli in aquatic environments is essential to improve the surveillance of fecal pollution indicators, to develop strategies to identify the sources of fecal contamination, and to implement appropriate management practices to minimize gastrointestinal disease transmission. In this study the robustness of five different rep-PCR methods, such as REP-PCR, ERIC-PCR, ERIC2-PCR, BOX-PCR and (GTG)5-PCR were evaluated to discriminate 271 E. coli strains isolated from two watersheds (Lakelse Lake and Okanagan Lake) located in British Columbia, Canada. Cluster analysis of (GTG)5-PCR, BOX-PCR, REP-PCR, ERIC-PCR and ERIC2-PCR profiles of 271 E. coli revealed 43 clusters, 35 clusters, 28 clusters, 23 clusters and 14 clusters, respectively. The discriminant analysis of rep-PCR genomic fingerprints of 271 E. coli isolates yielded an average rate of correct classification (watershed-specific) of 86.8%, 82.3%, 78.4%, 72.6% and 55.8% for (GTG)5-PCR, BOX-PCR, REP-PCR, ERIC-PCR and ERIC2-PCR, respectively. Based on the results of cluster analysis and discriminant function analysis, (GTG)5-PCR was found to be the most robust molecular tool for differentiation of E. coli populations in aquatic environments.


2012 ◽  
Vol 75 (6) ◽  
pp. 1148-1152 ◽  
Author(s):  
ELLEN J. VAN LOO ◽  
D. BABU ◽  
PHILIP G. CRANDALL ◽  
STEVEN C. RICKE

Liquid smoke extracts have traditionally been used as flavoring agents, are known to possess antioxidant properties, and serve as natural alternatives to conventional antimicrobials. The antimicrobial efficacies of commercial liquid smoke samples may vary depending on their source and composition and the methods used to extract and concentrate the smoke. We investigated the MICs of eight commercial liquid smoke samples against Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli. The commercial liquid smoke samples purchased were supplied by the manufacturer as water-based or concentrated extracts of smoke from different wood sources. The MICs of the commercial smokes to inhibit the growth of foodborne pathogens ranged from 0.5 to 6.0% for E. coli, 0.5 to 8.0% for Salmonella, and 0.38 to 6% for S. aureus. The MIC for each liquid smoke sample was similar in its effect on both E. coli and Salmonella. Solvent-extracted antimicrobials prepared using pecan shells displayed significant differences between their inhibitory concentrations depending on the type of solvent used for extraction. The results indicated that the liquid smoke samples tested in this study could serve as effective natural antimicrobials and that their inhibitory effects depended more on the solvents used for extraction than the wood source.


Author(s):  
Monika Hejna ◽  
Elisabetta Onelli ◽  
Alessandra Moscatelli ◽  
Maurizio Bellotto ◽  
Cinzia Cristiani ◽  
...  

Sustainable agriculture is aimed at long-term crop and livestock production with a minimal impact on the environment. However, agricultural practices from animal production can contribute to global pollution due to heavy metals from the feed additives that are used to ensure the nutritional requirements and also promote animal health and optimize production. The bioavailability of essential mineral sources is limited; thus, the metals are widely found in the manure. Via the manure, metallic ions can contaminate livestock wastewater, drastically reducing its potential recycling for irrigation. Phytoremediation, which is an efficient and cost-effective cleanup technique, could be implemented to reduce the wastewater pollution from livestock production, in order to maintain the water conservation. Plants use various strategies for the absorption and translocation of heavy metals, and they have been widely used to remediate livestock wastewater. In addition, the pollutants concentrated in the plants can be exhausted and used as heat to enhance plant growth and further concentrate the metals, making recycling a possible option. The biomass of the plants can also be used for biogas production in anaerobic fermentation. Combining phytoremediation and biorefinery processes would add value to both approaches and facilitate metal recovery. This review focuses on the concept of agro-ecology, specifically the excessive use of heavy metals in animal production, the various techniques and adaptations of the heavy-metal phytoremediation from livestock wastewater, and further applications of exhausted phytoremediated biomass.


2012 ◽  
Vol 154 (3-4) ◽  
pp. 339-346 ◽  
Author(s):  
Eamon Watson ◽  
Sonja Jeckel ◽  
Lucy Snow ◽  
Rebecca Stubbs ◽  
Chris Teale ◽  
...  

2012 ◽  
pp. 63-83
Author(s):  
Francesco Zecca ◽  
Elisabetta Capocchi

The aim of the project was to examine the features involved in product quality and animal health for the purposes of genetic selection in order to achieve the best quality in each of the species and/or breeds under consideration. Among the tasks carried out the working group had to verify the socio-economic development of the most satisfactory end results as determined by the working set of genetic selections in the light of continuous advances in knowledge regarding the bovine genome. The analysis was limited to cattle as they were considered the most representative species for the purpose of the study. The study started with an analysis of the sector to investigate the proactive dynamics concerning the use of technology in the cattle industry The approach used is one which has become customary in studies examining issues in this sector related to the system of farming/livestock and which allows us to detect not only the most crucial quantitative but also qualitative aspects that exist and have been established among the various components of the system, with particular reference to the types of productive performance which are determined by the use of different technical patterns, especially those related to improvement and genetic selection. The study's aim was to follow the analytical framework of the supply chain in order to highlight important conditions that contribute to an interpretation of the key economic characteristics for the selective breeding industry under analysis. All this is due to the gradual revelation of the genetic basis of biodiversity by means of genome sequencing. Thanks to genomics, subjects to be used for propagation can be selected in terms of the target characteristics to be achieved, such as greater energy efficiency, resulting in the ability to produce better cattle feed, more resistance to disease, or a reduction in environmental impact by reducing emissions of methane gas. Regarding the methodology adopted, an examination of the context is followed by an evaluation of the most suitable production factors for the enhancement of the cattle population and the article concludes with some suggestions for possible future interventions.


2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P > 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


Sign in / Sign up

Export Citation Format

Share Document