scholarly journals Antimicrobial and toxicological evaluation of Origanum vulgare: an in vivo study

2023 ◽  
Vol 83 ◽  
Author(s):  
I. Liaqat ◽  
A. Mahreen ◽  
M. Arshad ◽  
N. Arshad

Abstract Origanum vulgare has been of great interest in academia and pharma industry due to its antioxidant, antifungal and antitumor properties. The present study aimed to find the anti-MRSA potential and in vivo toxicity assessments of O. vulgare. O. vulgare extract was used to monitor anti-MRSA activity in mice. Following MRSA established infection in mice (Mus musculus), treatment with O. vulgare was continued for 7 days. Autopsies were performed and re-isolation, gross lesion scoring and bacterial load in various organs were measured. Additionally, blood sample was analysed for hematological assays. Toxicity assessment of O. vulgare potential as medicine was done at 200 mg/kg and 400 mg/kg by evaluating liver and kidney functions. Bacterial load and gross lesion in lungs and heart were significantly low compared to positive control following O. vulgare treatment. Likewise, O. vulgare treated groups had hematological, neutrophil and TLC values similar to control groups. Increased AST, ALP and total bilirubin alongwith marked hepatocellular degeneration and distortion around the central vein, inflammatory cell infiltration, and cytoplasmic vacuolization of hepatic cells was observed at higher dose. It is concluded that crude extract of O. vulgare may contain beneficial secondary metabolites and in future may be explored for curing infectious diseases.

2014 ◽  
Vol 11 (4) ◽  
pp. 1503-1509
Author(s):  
Baghdad Science Journal

Objective: In this study ,the effects of silver nanoparticles (Ag NPs)were investigated on the liver and kidney tissues. Methodology: The produced nanoparticles have an average particle size of about 30 nm. Eighteen male albino rats were used by dividing them into three groups, each group comprise 6 rats. First group(control group) given food and water like other groups by liberty. Second group was tail injected by (AgNPs) at dose of (0.4 mg/kg. body weight/day). Third group was injected by (AgNPs) at dose of (0.6 mg/kg. body weight/day) for 15 days. All animals were sacrified at the end of experiment. The liver and kidney tissues specimens were fixed in 10% formalin and histological preparations were carried out then stained with H&E. Pathological changes in liver and kidney tissues were showed. Results: Histopathological studies revealed the harmful effect of the silver nanoparticles uses on the liver and kidney rats, second group that treated with Ag NPs (0.4 mg/kg.body.weight/day), kidney sections showed enlargement of collecting tubules, increase in interstitial tissue medulla, necrosis and enlargement in proximal and distal convoluted tubules. Liver showed enlargement of the central vein and degeneration of hepatic cells. Third group that treated with Ag NPs (0.6 mg/kg. body weight/day); kidney sections showed hyperplasia of the interstitial connective tissue of renal medulla with hemorrhages, renal cortex showed, degenerative changes and necrosis of proximal and distal convoluted tubules. Liver section showed congestion and necrosis of hepatic cells. Conclusion: Silver nanoparticles cause damage in liver and kidney tissues. Recommendation: Further study is needed for the effect of Ag NPs on the other tissues.


2014 ◽  
Vol 998-999 ◽  
pp. 196-199
Author(s):  
Jie Fang ◽  
Lu Lu Yuan ◽  
Chen Jie Yao ◽  
Yan Li Wang ◽  
Ming Hong Wu

Titanium dioxide nanoparticles (TiO2-NPs) are widely used in many fields. The bio-distribution and toxicology of different sizes (25 nm and 50 nm) of TiO2-NPsin vivois evaluated in this paper. The results of quantitative distributionin vivoshow that it is difficult for TiO2-NPs to excretion clearly from tissues and organs. At the endpoint of experiment of different groups, there are still many TiO2-NPs located in the main organs such as spleen, liver and lung after 120 days. Blood biochemical parameters keep unchanged compared with control group. However, pathological results show that lesions in spleen, liver and lung where TiO2-NPs particles are mainly accumulated and retained are getting serious with the time prolonging. The results indicate that TiO2-NPs are low toxic to mice but may have some potential effects on liver and kidney functions after exposure long time. The fundamental importance information gained from such a study will give the guidance on the application of TiO2-NPs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0247633
Author(s):  
Mohammad A. A. Al-Najjar ◽  
Tamara Athamneh ◽  
Reem AbuTayeh ◽  
Iman Basheti ◽  
Claudia Leopold ◽  
...  

The present study evaluates the effect of calcium alginate aerogel as a potential drug carrier, on the liver and kidney functions, and on the gut microbiota of Wistar rats. The studied alginate aerogel was prepared in the form of nanoparticles using the jet cutting technique, and they were characterized in terms of specific surface areas, outer morphology and particle size distribution. For the in vivo study, calcium alginate aerogel was administered orally, and liver and kidney functions were tested for one week and for four weeks in two distinct studies. During the short-term in vivo study, feces samples were collected for bacterial DNA extraction followed by 16S rRNA gene sequencing analyses to detect changes in gut microbiota. Results showed that the prepared alginate aerogel has an average BET-specific surface area of around 540 m2/g, with a pore volume of 7.4 cc/g, and pore width of 30–50 nm. The in vivo study revealed that the levels of the studied kidney and liver enzymes didn’t exceed the highest level of the normal range. The study of gut microbiota showed different patterns; certain groups of bacteria, such as Clostridia and Bacteriodia, increased during the aerogels regime and continued to increase after the aerogel was stopped. While other groups such as Erysipelotrichia, and Candidatus saccharibacteria increased during aerogels treatment, and then decreased again after one month. Members of the Bacilli class showed a unique trend, that is, after being the most abundant group (63%) at time 0, their relative abundance decreased dramatically until it reached < 5%; which was the case even after stopping the aerogel treatment.


2000 ◽  
Vol 44 (9) ◽  
pp. 2492-2497 ◽  
Author(s):  
Faustino C. Icatlo ◽  
Nobutake Kimura ◽  
Hideo Goshima ◽  
Yoshikatsu Kodama

ABSTRACT The present study investigated the effect of a model urease-binding polysaccharide in combination with a histamine H2 receptor antagonist on Helicobacter pylori colonization in vivo. Euthymic hairless mice were treated daily with dextran sulfate via drinking water and/or famotidine via intragastric gavage starting at 1 week postchallenge with a CagA+ VacA+ (type 1) strain of H. pylori. Treatment of precolonized mice for 2 weeks with dextran sulfate combined with famotidine yielded a group mean bacterial load (per 100 mg of gastric tissue) of log101.04 CFU, which was significantly lower than those of the famotidine (log10 3.35 CFU, P < 0.01) and dextran sulfate (log10 2.45 CFU, P < 0.05) monotherapy groups and the infected nontreated group (log103.64 CFU, P < 0.01). Eradication was achieved after 2 weeks of treatment in 50% or more of the test mice using drug combinations (1 or 2 weeks of famotidine plus 2 weeks of dextran sulfate) versus none in the monotherapy and positive control groups. The enhanced activity of the drug combination may be related to the daily pattern of transient acid suppression by famotidine inducing periodic bacterial convergence to superficial mucus sites penetrated by dextran sulfate from the lumen. Increased urease-dextran sulfate avidity was observed in vitro in the presence of famotidine and may partly account for the enhanced activity. With potential utility in abbreviating treatment time and eradication of antibiotic-resistant strains, the use of urease-targeted polysaccharides concurrently with a gastric acid inhibitor warrants consideration as an additional component of the standard multidrug chemotherapy of H. pylori infection.


2020 ◽  
Vol 17 (Issue 1) ◽  
pp. 54-61
Author(s):  
Mahmoud M. Elalfy ◽  
Mamdouh Abouelmagd ◽  
Eman A. Abdelraheem ◽  
Mona G. El-hadidy

Silver nanoparticles (Ag-NPs) had many uses in medicine, household and industry. To better understand the postnatal toxicity of Ag-NPs in lactating female rats and its offspring’s, 18 female rats after delivery were divided into three groups and dams received orally the AG-NPs at doses of 0, 50, 100 ppm daily for 21 days. After the end of treatment, all rats were euthanized and blood and tissues were separated for evaluation of biochemical and histopathology in dams and its pups. The Ag-NPs had no effect on the dam's weight while the reduction of rats’ pups weight was noticed after first week only after the treatment. Notably, Ag-NPs had toxic effects in rat’s pups, as well as its dam with evidence of elevation of liver enzymes, urea, creatinine and reduction of serum protein, albumin and globulin and considered the first report explained the toxicity in the rat’s pups. Moreover, rats' pups revealed histopathological changes in liver and kidney as well as its dams. Notably, the nano-silver is considered cytotoxic for HepG2 cell line as well as mouse liver cell line. In conclusions, the Ag-NPs considered toxic in offspring as well as dams and had immunosuppressive effects in the postnatal model of toxicity as well as cytotoxicity to hepatic cells lines.


Parasitology ◽  
2014 ◽  
Vol 142 (3) ◽  
pp. 439-448 ◽  
Author(s):  
L. T. GRESSLER ◽  
C. B. OLIVEIRA ◽  
K. CORADINI ◽  
L. DALLA ROSA ◽  
T. H. GRANDO ◽  
...  

SUMMARYThis study aimed to evaluate in vitro and in vivo trypanocidal activity of free and nanoencapsulated curcumin against Trypanosoma evansi. In vitro efficacy of free curcumin (CURC) and curcumin-loaded in lipid-core nanocapsules (C-LNCs) was evaluated to verify their lethal effect on T. evansi. To perform the in vivo tests, T. evansi-infected animals were treated with CURC (10 and 100 mg kg−1, intraperitoneally [i.p.]) and C-LNCs (10 mg kg−1, i.p.) during 6 days, with the results showing that these treatments significantly attenuated the parasitaemia. Infected untreated rats showed protein peroxidation and an increase of nitrites/nitrates, whereas animals treated with curcumin showed a reduction on these variables. As a result, the activity of antioxidant enzymes (superoxide dismutase and catalase) differs between groups (P<0·05). Infected animals and treated with CURC exhibited a reduction in the levels of alanine aminotransferase and creatinine, when compared with the positive control group. The use of curcumin in vitro resulted in a better parasitaemia control, an antioxidant activity and a protective effect on liver and kidney functions of T. evansi-infected adult male Wistar rats.


Author(s):  
Nurgozhin T. ◽  
Sergazy S. H. ◽  
Adilgozhina G. ◽  
Gulyayev A. ◽  
Shulgau Z. ◽  
...  

Objective:This study investigates the hepatoprotective effect and the antioxidant role of polyphenol concentrate in the experimental model of carbon tetrachloride (CCl4) induced toxicity. Methods: Antioxidant activity of Cabernet Sauvignon grape polyphenol were evaluated by radical scavenging of 1,1-diphenyl-2-picryl hydrazyl radical (DPPH), 2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS.+). In addition, the effects of polyphenol concentrate on the survival of Wistar rats in the toxicity model, was also investigated. The polyphenol concentrate was administered for 5 five days prior to injection of carbon tetrachloride in a sub-lethal dose of 300 mg/kg of animal body weight in order to perform histological examinations of the liver and kidney, and detect the levels of AST, ALT and bilirubin. Results: Administration of polyphenol concentrate increased animal survival in the experimental model. Moreover, the intragastric administration of polyphenol concentrate prior to the initiation of the experimental model of toxicity, which was caused by a sub-lethal CCl4 dose, reduced morphological injuries in the liver and kidney, decreased the AST and ALT levels of the blood serum. Discussion and conclusion: Our data demonstrate that polyphenol concentrate possesses an antioxidant potential both in vitro and in vivo by reducing antioxidant stress that was caused by CCl4 administration into rats.


2019 ◽  
Vol 15 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Ahmed A. Haroun ◽  
Abdel-Tawab H. Mossa ◽  
Samia M.M. Mohafrash

Background: Funcionalized multi-walled carbon nanotubes (ox-MWCNTs) were used for the preparation of therapeutic nanoparticles for delivery of some bioactive compounds. Consequently, this work deals with the preparation of grafted MWCNTs with n-vinyl caprolactam in the presence of pomegranate peel extract (P. granatum), titanium dioxide (TiO2) and/or silver nanoparticeles and their toxic effects on male mice using in vivo biological examination (liver and kidney dysfunction biomarkers) and the histopathological analysis. Methods: P. granatum extract was immobilized onto functionalized MWCNTs using simple adsorption technique. Moreover, The prepared materials were analyzed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM). In vivo examination using liver and kidney dysfunction biomarkers was investigated. In addition, the histopathological study was carried out. Results: The ox-MWCNTs induced significant elevation in the liver enzymes including AST, ALT and ALP relative to the control group. While, the treatment with P. granatum extract only did not induce any change in the liver and kidney biomarkers. In other words, P. granatum extract loaded onto functionalized MWCNTs showed low effects on liver enzymes and kidney function biomarkers in the treated mice in comparison with ox-MWCNTs and extract separately. Moreover, histopathological analysis revealed that the P. granatum extract functionalized MWCNTs exhibited normal renal tissue with no histopathological alteration. Conclusion: The grafted MWCNTs with n-vinyl caprolactam in the presence of pomegranate peel extract (P. granatum), titanium dioxide (TiO2) and/or silver nanoparticeles were successfully prepared. SEM-micrographs showed complete coating of MWCNTs fiber with the extract. The prepared materials resulted in no toxic effects and the histopathological findings were confirmed by inflammation of the liver and kidney tissues.


2019 ◽  
Vol 19 (5) ◽  
pp. 667-676
Author(s):  
José R. Santin ◽  
Gislaine F. da Silva ◽  
Maria V.D. Pastor ◽  
Milena F. Broering ◽  
Roberta Nunes ◽  
...  

Background: It was recently demonstrated that the phthalimide N-(4-methyl-phenyl)-4- methylphthalimide (MPMPH-1) has important effects against acute and chronic pain in mice, with a mechanism of action correlated to adenylyl cyclase inhibition. Furthermore, it was also demonstrated that phthalimide derivatives presented antiproliferative and anti-tumor effects. Considering the literature data, the present study evaluated the effects of MPMPH-1 on breast cancer bone metastasis and correlated painful symptom, and provided additional toxicological information about the compound and its possible metabolites. Methods: In silico toxicological analysis was supported by in vitro and in vivo experiments to demonstrate the anti-tumor and anti-hypersensitivity effects of the compound. Results: The data obtained with the in silico toxicological analysis demonstrated that MPMPH-1 has mutagenic potential, with a low to moderate level of confidence. The mutagenicity potential was in vivo confirmed by micronucleus assay. MPMPH-1 treatments in the breast cancer bone metastasis model were able to prevent the osteoclastic resorption of bone matrix. Regarding cartilage, degradation was considerably reduced within the zoledronic acid group, while in MPMPH-1, chondrocyte multiplication was observed in random areas, suggesting bone regeneration. Additionally, the repeated treatment of mice with MPMPH-1 (10 mg/kg, i.p.), once a day for up to 36 days, significantly reduces the hypersensitivity in animals with breast cancer bone metastasis. Conclusion: Together, the data herein obtained show that MPMPH-1 is relatively safe, and significantly control the cancer growth, allied to the reduction in bone reabsorption and stimulation of bone and cartilage regeneration. MPMPH-1 effects may be linked, at least in part, to the ability of the compound to interfere with adenylylcyclase pathway activation.


Sign in / Sign up

Export Citation Format

Share Document