scholarly journals Selection of Indicators to Discriminate Soil Tillage Systems and to Assess Soil Quality in a Red Latosol

2020 ◽  
Vol 63 (spe) ◽  
Author(s):  
Regiane Kazmierczak ◽  
Neyde Fabíola Balarezo Giarola ◽  
Flávia Biasso Riferte ◽  
Josiane Burkner dos Santos ◽  
Alisson Marcos Fogaça ◽  
...  
Author(s):  
Audrey V. Gamble ◽  
Andrew J. Price

Agricultural producers and scientists have long recognized both beneficial and detrimental aspects of soil tillage. With the development and adoption of herbicide-resistant crops, particularly glyphosate-resistant crops, herbicides such as glyphosate replaced the need for tillage either before or after crop planting. Thus, tillage has become less important for weed management and has been a primary enabler for the success of the majority of conservation production systems. Currently, herbicide-resistant and troublesome weeds are continually challenging agricultural decisions throughout the world. Conservation tillage hectarage are at constant risk of being converted to higher-intensity tillage systems due to lack of weed control. The shift to higher-intensity tillage facilitates burial of weed seed through use of inversion tillage and/or use of surface tillage to facilitate preplant incorporated and preemergence herbicides for control of herbicide resistant or troublesome weeds, especially in non-irrigated production. For example, Palmer amaranth (Amaranthus palmeri) has become the dominant weed problem in United States row crop production because of evolved resistance to glyphosate. Inversion tillage was clearly demonstrated to be an effective tool in helping the management of this weed. However, there is no question that most tillage operations promote soil loss, adversely affect (lower) surface water quality, and negatively impact soil productivity. Depending on the severity of the herbicide-resistant or troublesome weed infestation, multiple strategies involving integration of cultural as well as chemical weed control will be needed to overcome the need for tillage. Utilizing high biomass conservation tillage systems, such as those used extensively in South America and introduced to the United States, can help reduce the emergence of weeds by suppressing weed germination and growth. When the winter cover crop is planted early and managed for maximum growth, a dense mat is formed on the soil surface. Because weed emergence and growth are suppressed by the physical barrier and shading provided by the residue, more residue results in increased weed control. Conservation tillage systems that minimize soil disturbance (direct seeding or minimum tillage) can further reduce weed seed germination. In addition, allelopathy plays a role in weed suppression, but quantifying allelopathic effects in applied research is rarely accomplished. Creative research programs have been developed that meet conservation compliance requirements and at the same time judiciously use tillage as an element for management of resistant or troublesome species. Similar programs are needed to help manage other herbicide resistant or troublesome weed species in other regions and cropping systems. Further research is critically needed in instances when few or no other options are available to ensure the economic viability of farming operations while addressing long-term soil quality concerns.


Author(s):  
M. Novokhatskyi ◽  
◽  
V. Targonya ◽  
T. Babinets ◽  
O. Gorodetskyi ◽  
...  

Aim. Assessment of the impact of the most common systems of basic tillage and biological methods of optimization of nutrition regimes on the realization of the potential of grain productivity of soybean in the Forest-Steppe of Ukraine. Methods. The research used general scientific (hypothesis, experiment, observation) and special (field experiment, morphological analysis) methods Results. The analysis of the results of field experiments shows that the conservation system of soil cultivation, which provided the formation of 27.6 c/ha of grain, is preferable by the level of biological yield of soybean. The use of other systems caused a decrease in the biological yield level: up to 26.4 c/ha for the use of the traditional system, up to 25.3 c/ha for the use of mulching and up to 23.0 c/ha for the use of the mini-till. With the use of Groundfix, the average biological yield of soybean grain increases to 25.6 c / ha for application rates of 5 l/ha, and to 28.2 c/ha for application rates of 10 l/ha when control variants (without the use of the specified preparation) an average of 22.6 c/ha of grain was formed with fluctuations in soil tillage systems from 21.0 (mini-bodies) to 25.8 c/ha (traditional).The application of Groundfix (10 l/ha) reduced the seed abortion rate from 11.0% (average without biofertilizer variants) to 8.0%, forming the optimal number of stem nodes with beans, increasing the attachment height of the lower beans and improving other indicators of biological productivity soybeans. Conclusions. It has been found that the use of the canning tillage system generates an average of 27.6 cent soybean grains, which is the highest indicator among the main tillage systems within the scheme of our research. The use of Groundfix caused a change in this indicator: if the variants with a conservative system of basic tillage without the use of biological preparation (control) were formed on average 24.1 c/ha, the use of Ground Licks caused the increase of biological productivity up to 29.4 c/ha, and at a dose of 10 l/ha biological yield was 32.2 c/ha. It was found that both the use of Groundfix and the basic tillage system influenced the elements of the yield structure: the density of the plants at the time of harvest depended more on the tillage system than on the use of Groundfix; the use of Groundfix and increasing its dose within the scheme of our studies positively reflected on the density of standing plants; the height of attachment of the lower beans and reduced the abortion of the seeds.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1276
Author(s):  
Vaida Steponavičienė ◽  
Aušra Marcinkevičienė ◽  
Lina Marija Butkevičienė ◽  
Lina Skinulienė ◽  
Vaclovas Bogužas

The composition of weed communities in agricultural crops is dependent on soil properties and the applied agronomic practices. The current study determined the effect of different tillage systems and crop residue on the soil weed community composition. The research programme encompassed 2013–2015 in a long-term field experiment located in the Experimental Station of Vytautas Magnus University in Lithuania. The soil type in the experimental field was qualified as Endocalcaric Stagnosol (Aric, Drainic, Ruptic, Amphisiltic). Weeds were categorised into communities according to soil pH, nitrogen and moisture indicators. The results of investigations were grouped using cluster analysis. Agricultural crops were dominated by different weed species depending on the soil pH and moisture. Weed species were relatively more frequent indicating nitrogen-rich and very nitrogen-rich soils. In the reduced tillage and no-tillage systems, an increase in the abundance of weed species indicating moderate acidity and low acidity, moderately wet and wet, nitrogen-rich and very nitrogen-rich soils was observed. The application of plant residues decreased the weed species abundance. In the reduced tillage and no-tillage systems, the quantitative distribution of weed was often uneven. By evaluating the association of weed communities with groups of different tillage systems with or without plant residues, their control can be optimised.


2011 ◽  
Vol 183-185 ◽  
pp. 1190-1194
Author(s):  
Jun Ke Zhang ◽  
Qing Ju Hao ◽  
Chang Sheng Jiang ◽  
Yan Wu

The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60 cm after 20 years in a purple paddy soil. The tillage experiment was established in the Key Field Station for Monitoring of Eco-Environment of Purple Soil of the Ministry of Agriculture of China, located in the farm of Southwest University (30°26′N, 106°26′E), Chongqing. In this paper, five tillage treatments including conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SL), no-till and ridge culture with rotation of rice and rape system (LM), no-till and plain culture with rotation of rice and rape system (XM) and tillage and ridge culture with rotation of rice and rape system (LF) were selected as research objectives to measure SOC storage and stratification ratio of SOC (CSR). The SOC storage under different tillage systems was calculated based on an equivalent soil mass. The CSR can be used as an indicator of soil quality because surface organic matter is essential to erosion control, water infiltration, and the conservation of nutrients. Results showed that in soil under no-till SOC was concentrated near the surface, while in tilled soil SOC decreased equably with the increase of soil depth. The difference of SOC contents between the five tillage systems was the largest in the top soil and the lowest in the bottom soil. The order of SOC storage was LM (158.52 Mg C•ha-1) >DP (106.74 Mg C•ha-1) >XM (100.11 Mg C•ha-1) >LF (93.11 Mg C•ha-1) >SL (88.59 Mg C•ha-1), LM treatment was significantly higher than the other treatments. The CSR of 0-10/50-60 cm was 2.65, 2.70 and 2.14 under LM, XM and LF treatments, while 1.54 and 1.92 under DP and SL treatments. We considered CSR>2 indicate an improvement in soil quality produced by changing from tillage to no-tillage, as well as changing from plane to ridge. Overall, long-term LM treatment is a valid strategy for increasing SOC storage and improving soil quality in a purple paddy soil in Southwest China.


1999 ◽  
Vol 50 (2) ◽  
pp. 115-125 ◽  
Author(s):  
Maria Stenberg ◽  
Helena Aronsson ◽  
Börje Lindén ◽  
Tomas Rydberg ◽  
Arne Gustafson

2009 ◽  
Vol 37 (2) ◽  
pp. 305-310 ◽  
Author(s):  
B. Stipesevic ◽  
D. Jug ◽  
I. Jug ◽  
M. Tolimir ◽  
M. Cvijovic

2009 ◽  
Vol 33 (2) ◽  
pp. 325-334 ◽  
Author(s):  
Luis Fernando Chavez ◽  
Telmo Jorge Carneiro Amado ◽  
Cimélio Bayer ◽  
Newton Junior La Scala ◽  
Luisa Fernanda Escobar ◽  
...  

Agricultural soils can act as a source or sink of atmospheric C, according to the soil management. This long-term experiment (22 years) was evaluated during 30 days in autumn, to quantify the effect of tillage systems (conventional tillage-CT and no-till-NT) on the soil CO2-C flux in a Rhodic Hapludox in Rio Grande do Sul State, Southern Brazil. A closed-dynamic system (Flux Chamber 6400-09, Licor) and a static system (alkali absorption) were used to measure soil CO2-C flux immediately after soybean harvest. Soil temperature and soil moisture were measured simultaneously with CO2-C flux, by Licor-6400 soil temperature probe and manual TDR, respectively. During the entire month, a CO2-C emission of less than 30 % of the C input through soybean crop residues was estimated. In the mean of a 30 day period, the CO2-C flux in NT soil was similar to CT, independent of the chamber type used for measurements. Differences in tillage systems with dynamic chamber were verified only in short term (daily evaluation), where NT had higher CO2-C flux than CT at the beginning of the evaluation period and lower flux at the end. The dynamic chamber was more efficient than the static chamber in capturing variations in CO2-C flux as a function of abiotic factors. In this chamber, the soil temperature and the water-filled pore space (WFPS), in the NT soil, explained 83 and 62 % of CO2-C flux, respectively. The Q10 factor, which evaluates CO2-C flux dependence on soil temperature, was estimated as 3.93, suggesting a high sensitivity of the biological activity to changes in soil temperature during fall season. The CO2-C flux measured in a closed dynamic chamber was correlated with the static alkali adsorption chamber only in the NT system, although the values were underestimated in comparison to the other, particularly in the case of high flux values. At low soil temperature and WFPS conditions, soil tillage caused a limited increase in soil CO2-C flux.


2014 ◽  
Vol 38 (3) ◽  
pp. 972-979 ◽  
Author(s):  
Arminda Moreira de Carvalho ◽  
Mercedes Maria da Cunha Bustamante ◽  
Zayra Azeredo do Prado Almondes ◽  
Cícero Célio de Figueiredo

Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo) from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L.), and Raphanus sativus L.) were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP) was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.


2011 ◽  
Vol 56 (2) ◽  
pp. 111-119
Author(s):  
Branimir Mikic ◽  
Bojan Stipesevic ◽  
Emilija Raspudic ◽  
Georg Drezner ◽  
Bojana Brozovic

Modern soil tillage systems based on different tools than mouldboard plough have very often stronger weed occurrence, which can be a serious problem for achieving high yields. An obvious solution for weed suppression is a herbicide, whose improper use can deteriorate environment and lead toward serious ecological problems. In order to investigate the interaction between soil tillage and herbicide, trial was set up in Valpovo in seasons 2008/09 - 2010/11. Two soil tillage systems (CT-conventional tillage, based on mouldboard ploughing, and CH-chiselling and disk harrowing, without ploughing) and five herbicide treatments (NH-control, no herbicides; H10- recommended dose of Herbaflex (2 l ha-1); H05-half dose of Herbaflex; F10- recommended dose of Fox (1.5 l ha-1); and F05-half dose of Fox) were applied to winter wheat crops. Results showed similar effects of soil tillage on the winter wheat yield, whereas different herbicide dosages showed similar weed suppression and influence on winter wheat yield.


Sign in / Sign up

Export Citation Format

Share Document