scholarly journals The intersection of integrated pest management and soil quality in the resistant weed era

Author(s):  
Audrey V. Gamble ◽  
Andrew J. Price

Agricultural producers and scientists have long recognized both beneficial and detrimental aspects of soil tillage. With the development and adoption of herbicide-resistant crops, particularly glyphosate-resistant crops, herbicides such as glyphosate replaced the need for tillage either before or after crop planting. Thus, tillage has become less important for weed management and has been a primary enabler for the success of the majority of conservation production systems. Currently, herbicide-resistant and troublesome weeds are continually challenging agricultural decisions throughout the world. Conservation tillage hectarage are at constant risk of being converted to higher-intensity tillage systems due to lack of weed control. The shift to higher-intensity tillage facilitates burial of weed seed through use of inversion tillage and/or use of surface tillage to facilitate preplant incorporated and preemergence herbicides for control of herbicide resistant or troublesome weeds, especially in non-irrigated production. For example, Palmer amaranth (Amaranthus palmeri) has become the dominant weed problem in United States row crop production because of evolved resistance to glyphosate. Inversion tillage was clearly demonstrated to be an effective tool in helping the management of this weed. However, there is no question that most tillage operations promote soil loss, adversely affect (lower) surface water quality, and negatively impact soil productivity. Depending on the severity of the herbicide-resistant or troublesome weed infestation, multiple strategies involving integration of cultural as well as chemical weed control will be needed to overcome the need for tillage. Utilizing high biomass conservation tillage systems, such as those used extensively in South America and introduced to the United States, can help reduce the emergence of weeds by suppressing weed germination and growth. When the winter cover crop is planted early and managed for maximum growth, a dense mat is formed on the soil surface. Because weed emergence and growth are suppressed by the physical barrier and shading provided by the residue, more residue results in increased weed control. Conservation tillage systems that minimize soil disturbance (direct seeding or minimum tillage) can further reduce weed seed germination. In addition, allelopathy plays a role in weed suppression, but quantifying allelopathic effects in applied research is rarely accomplished. Creative research programs have been developed that meet conservation compliance requirements and at the same time judiciously use tillage as an element for management of resistant or troublesome species. Similar programs are needed to help manage other herbicide resistant or troublesome weed species in other regions and cropping systems. Further research is critically needed in instances when few or no other options are available to ensure the economic viability of farming operations while addressing long-term soil quality concerns.

1998 ◽  
Vol 9 (5) ◽  
pp. 549-568
Author(s):  
Noel D. Uri

The impact of energy on the adoption of conservation tillage is of special importance in addressing concerns about the effect of agricultural production on the environment in the United States. It is the subject of this paper. After establishing that a relationship exists between the price of energy and the adoption of conservation tillage via cointegration techniques, the relationship is quantified. It is shown that while the real price of crude oil, the proxy used for the price of energy, does not affect the rate of adoption of conservation tillage, it does impact the extent to which it is used. Finally, there is no structural instability in the relationship between the relative use of conservation tillage and the real price of crude oil over the period 1963 to 1997.


2020 ◽  
Vol 63 (spe) ◽  
Author(s):  
Regiane Kazmierczak ◽  
Neyde Fabíola Balarezo Giarola ◽  
Flávia Biasso Riferte ◽  
Josiane Burkner dos Santos ◽  
Alisson Marcos Fogaça ◽  
...  

2013 ◽  
Vol 27 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Kelly A. Barnett ◽  
A. Stanley Culpepper ◽  
Alan C. York ◽  
Lawrence E. Steckel

Glyphosate-resistant (GR) weeds, especially GR Palmer amaranth, are very problematic for cotton growers in the Southeast and Midsouth regions of the United States. Glufosinate can control GR Palmer amaranth, and growers are transitioning to glufosinate-based systems. Palmer amaranth must be small for consistently effective control by glufosinate. Because this weed grows rapidly, growers are not always timely with applications. With widespread resistance to acetolactate synthase-inhibiting herbicides, growers have few herbicide options to mix with glufosinate to improve control of larger weeds. In a field study using a WideStrike®cotton cultivar, we evaluated fluometuron at 140 to 1,120 g ai ha−1mixed with the ammonium salt of glufosinate at 485 g ae ha−1for control of GR Palmer amaranth 13 and 26 cm tall. Standard PRE- and POST-directed herbicides were included in the systems. Glufosinate alone injured the WideStrike® cotton less than 10%. Fluometuron increased injury up to 25% but did not adversely affect yield. Glufosinate controlled 13-cm Palmer amaranth at least 90%, and there was no improvement in weed control nor a cotton yield response to fluometuron mixed with glufosinate. Palmer amaranth 26 cm tall was controlled only 59% by glufosinate. Fluometuron mixed with glufosinate increased control of the larger weeds up to 28% and there was a trend for greater yields. However, delaying applications until weeds were 26 cm reduced yield 22% relative to timely application. Our results suggest fluometuron mixed with glufosinate may be of some benefit when attempting to control large Palmer amaranth. However, mixing fluometuron with glufosinate is not a substitute for a timely glufosinate application.


2020 ◽  
Vol 34 (4) ◽  
pp. 624-629 ◽  
Author(s):  
J. Anita Dille ◽  
Phillip W. Stahlman ◽  
Curtis R. Thompson ◽  
Brent W. Bean ◽  
Nader Soltani ◽  
...  

AbstractPotential yield losses in grain sorghum due to weed interference based on quantitative data from the major grain sorghum-growing areas of the United States are reported by the WSSA Weed Loss Committee. Weed scientists and extension specialists who researched weed control in grain sorghum provided data on grain sorghum yield loss due to weed interference in their region. Data were requested from up to 10 individual experiments per calendar year over 10 yr between 2007 and 2016. Based on the summarized information, farmers in Arkansas, Kansas, Missouri, Nebraska, South Dakota, and Texas would potentially lose an average of 37%, 38%, 30%, 56%, 61%, and 60% of their grain sorghum yield with no weed control, and have a corresponding annual monetary loss of US $19 million, 302 million, 7 million, 32 million, 25 million, and 314 million, respectively. The overall average yield loss due to weed interference was estimated to be 47% for this grain sorghum-growing region. Thus, US farmers would lose approximately 5,700 million kg of grain sorghum valued at approximately US $953 million annually if weeds are not controlled. With each dollar invested in weed management (based on estimated weed control cost of US $100 ha−1), there would be a return of US $3.80, highlighting the return on investment in weed management and the importance of continued weed science research for sustaining high grain sorghum yield and profitability in the United States.


1994 ◽  
Vol 34 (7) ◽  
pp. 1021 ◽  
Author(s):  
JE Hill ◽  
RJ Jr Smith ◽  
DE Bayer

Among temperate rice areas, the United States and Australia are most similar in climate and in the mechanisation of rice culture. Many weed problems, even weed species invading rice, are common to both countries; and the present technology for weed control as well as concern for the impact of these technologies to environmental quality, herbicide resistance, and other weed-related issues bear many similarities. Application of current, and any new, technologies to emerging issues in US rice weed control will therefore be directly relevant to rice production in Australia and all other temperate areas struggling with the same challenges. Weeds are a significant problem in temperate rice culture. In the United States, rice is mechanically direct-seeded, allowing weeds to germinate and establish with the crop. In the last 15 years weed growth and competition has been increased by the adoption of semi-dwarf cultivars, high N fertilisation, and, in water-seeded rice, shallow flooding. High rates, and often multiple applications, of herbicides have been necessary to maximise the yield potential of these cultural systems. Advances in cultural practices and herbicide technology have maintained, if not improved, weed control; but nearly 30 years of propanil use in the southern USA resulted in propanil-resistant barnyard grass Echinochloa crus-galli (L.) Beauv., and after 4 years of continuous use, bensulfuron resistance to 4 aquatic weed species was discovered in California. Although herbicides with different mechanisms of action are needed for alternation in resistance management strategies, fewer are likely to be available. Social and environmental concerns have slowed the development and registration of rice herbicides and increased the cost of controlling weeds. Water quality deterioration from ricefield tailwaters, drift to sensitive crops, the cost of renewing registration in aquatic systems, and weed resistance all forecast reduced herbicide use in rice. Neither cultural practices nor herbicides alone can solve weed problems in direct-seeded, mechanised rice culture. With fewer herbicides and a cultural system highly vulnerable to weed losses, integrated management strategies with better information on which to base weed control decisions will be needed to solve weed problems in temperate rice.


2015 ◽  
Vol 95 (5) ◽  
pp. 973-981 ◽  
Author(s):  
Amit J. Jhala ◽  
Mayank S. Malik ◽  
John B. Willis

Jhala, A. J., Malik, M. S. and Willis, J. B. 2015. Weed control and crop tolerance of micro-encapsulated acetochlor applied sequentially in glyphosate-resistant soybean. Can. J. Plant Sci. 95: 973–981. Acetochlor, an acetamide herbicide, has been used for many years for weed control in several crops, including soybean. Micro-encapsulated acetochlor has been recently registered for preplant (PP), pre-emergence (PRE), and post-emergence (POST) application in soybean in the United States. Information is not available regarding the sequential application of acetochlor for weed control and soybean tolerance. The objectives of this research were to determine the effect of application timing of micro-encapsulated acetochlor applied in tank-mixture with glyphosate in single or sequential applications for weed control in glyphosate-resistant soybean, and to determine its impact on soybean injury and yields. Field experiments were conducted at Clay Center, Nebraska, in 2012 and 2013, and at Waverly, Nebraska, in 2013. Acetochlor tank-mixed with glyphosate applied alone PP, PRE, or tank-mixed with flumioxazin, fomesafen, or sulfentrazone plus chlorimuron provided 99% control of common waterhemp, green foxtail, and velvetleaf at 15 d after planting (DAP); however, control declined to ≤40% at 100 DAP. Acetochlor tank-mixed with glyphosate applied PRE followed by early POST (V2 to V3 stage of soybean) or late POST (V4 to V5 stage) resulted in ≥90% control of common waterhemp and green foxtail, reduced weed density to ≤2 plants m−2 and biomass to ≤12 g m−2, and resulted in soybean yields >3775 kg ha−1. The sequential applications of glyphosate plus acetochlor applied PP followed by early POST or late POST resulted in equivalent weed control to the best herbicide combinations included in this study and soybean yield equivalent to the weed free control. Injury to soybean was <10% in each of the treatments evaluated. Micro-encapsulated acetochlor can be a good option for soybean growers for controlling grasses and small-seeded broadleaf weeds if applied in a PRE followed by POST herbicide program in tank-mixture with herbicides of other modes of action.


2015 ◽  
Vol 29 (4) ◽  
pp. 758-770 ◽  
Author(s):  
Charles W. Cahoon ◽  
Alan C. York ◽  
David L. Jordan ◽  
Wesley J. Everman ◽  
Richard W. Seagroves ◽  
...  

Cotton growers rely heavily upon glufosinate and various residual herbicides applied preplant, PRE, and POST to control Palmer amaranth resistant to glyphosate and acetolactate synthase-inhibiting herbicides. Recently deregulated in the United States, cotton resistant to dicamba, glufosinate, and glyphosate (B2XF cotton) offers a new platform for controlling herbicide-resistant Palmer amaranth. A field experiment was conducted in North Carolina and Georgia to determine B2XF cotton tolerance to dicamba, glufosinate, and glyphosate and to compare Palmer amaranth control by dicamba to a currently used, nondicamba program in both glufosinate- and glyphosate-based systems. Treatments consisted of glyphosate or glufosinate applied early POST (EPOST) and mid-POST (MPOST) in a factorial arrangement of treatments with seven dicamba options (no dicamba, PRE, EPOST, MPOST, PRE followed by [fb] EPOST, PRE fb MPOST, and EPOST fb MPOST) and a nondicamba standard. The nondicamba standard consisted of fomesafen PRE, pyrithiobac EPOST, and acetochlor MPOST. Dicamba caused no injury when applied PRE and only minor, transient injury when applied POST. At time of EPOST application, Palmer amaranth control by dicamba or fomesafen applied PRE, in combination with acetochlor, was similar and 13 to 17% greater than acetochlor alone. Dicamba was generally more effective on Palmer amaranth applied POST rather than PRE, and two applications were usually more effective than one. In glyphosate-based systems, greater Palmer amaranth control and cotton yield were obtained with dicamba applied EPOST, MPOST, or EPOST fb MPOST compared with the standard herbicides in North Carolina. In contrast, dicamba was no more effective than the standard herbicides in the glufosinate-based systems. In Georgia, dicamba was as effective as the standard herbicides in a glyphosate-based system only when dicamba was applied EPOST fb MPOST. In glufosinate-based systems in Georgia, dicamba was as effective as standard herbicides only when dicamba was applied twice.


Sign in / Sign up

Export Citation Format

Share Document