scholarly journals Agronomic aspects of soybean plants subjected to deficit irrigation

Author(s):  
Antônia C. Nunes ◽  
Francisco M. L. Bezerra ◽  
Roberta A. e Silva ◽  
José L. C. da Silva Júnior ◽  
Flávia B. Gonçalves ◽  
...  

ABSTRACT This study aimed to evaluate the behavior of soybean plants subjected to irrigation management with controlled water deficits in different phenological stages. The research was conducted in an experimental area of the Federal University of Tocantins (UFT), in Palmas-TO, Brazil. The experimental design was randomized blocks with four replicates, and treatments arranged in a split-plot scheme. The plots consisted of irrigation levels that induced plants to water deficit in the vegetative stage, reproductive stage and throughout the entire cycle, based on potential crop evapotranspiration (ETpc). The subplots corresponded to two soybean cultivars (M9144RR and TMG1288RR). The following agronomic variables were evaluated: days until flowering, days until maturation, plant height, first pod height, number of pods per plant, stem diameter, leaf area and yield. Irrigation management with moderate water deficit, 50% of ETpc, in the vegetative stage, promoted the best agronomic characteristics and contributed to increase the yield of the evaluated soybean cultivars, especially M9144RR.

Author(s):  
Alessandra M. de L. Naoe ◽  
Joênes M. Peluzio ◽  
Leonardo J. M. Campos ◽  
Lucas K. Naoe ◽  
Roberta A. e Silva

ABSTRACT This study aimed to verify the effect of co-inoculation, association between Azospirillum brasilense and Bradyrhizobium japonicum bacteria, on soybean plants subjected to water deficit at two sowing dates. Two field experiments were conducted at the Universidade Federal de Tocantins, campus of Palmas, Brazil, in 2016. The experimental design was randomized blocks in a split-split-plot arrangement with four repetitions, where the plots consisted of two irrigation depths (100 and 25% of crop evapotranspiration - ETc), the subplots was composed of two methods of inoculant application (inoculation with Bradyrhizobium japonicum and co-inoculation with Azospirillum brasilense + Bradyrhizobium japonicum) and the sub-subplots comprised two soybean cultivars (TMG 132 and ANTA 82). The cultivars responded differently to the sowing dates. Co-inoculation did not influence grain yield under full irrigation conditions (100% ETc), in neither cultivar evaluated. However, under the water deficit condition (25% ETc), the grain yield of the cultivar TMG 132 increased 77.20%, indicating that there are different responses of interaction between Azospirillum brasilense, plant genotype and sowing dates.


2020 ◽  
Vol 9 (6) ◽  
pp. e53963373
Author(s):  
Ricardo Gava ◽  
Mayara Fávero Cotrim ◽  
Irineu Eduardo Kühn ◽  
Carlos Roberto Wassolowski ◽  
Pedro Henrique Alves Martins ◽  
...  

Considering the hypothesis that soybean cultivars present different yield potential, even under ideal water conditions, this study aimed to identify highly productive soybean cultivars under optimal conditions of soil moisture management. Two experiments were conducted in the 2015/16 and 2016/17 crop seasons in Chapadão do Sul-MS, in a complete  In a split-plot arrangement design with four replications. In the first experiment, the plots was composed of six water application frequencies (0, 1, 2, 3, 4, and 5 days); in the second experiment, the primary factor was constituted by six supplementary irrigation levels (0, 25, 50, 75, 100, and 125% of the Crop Evapotranspiration - ETc). In each experiment, subplots was composed of  five soybean cultivars. The following variables were evaluated: plant height, insertion of the first pod, hundred grain weight, and grain yield. Regardless of the irrigation management used, soybean cultivars presented different agronomic performance.


2011 ◽  
Vol 31 (4) ◽  
pp. 676-686 ◽  
Author(s):  
Eduardo C. Oliveira ◽  
Jacinto de A. Carvalho ◽  
Wellington G. da Silva ◽  
Fátima C. Rezende ◽  
Willian F. de Almeida

The experiment was performed in the experimental area of the Engineering Department Federal University of Lavras, Minas Gerais State, Brazil. It aimed at identifying the adequate irrigation management of the greenhouse-cultivated Japanese cucumber (Cucumis sativus L.). complete randomized design, with four levels of soil water potential (15; 30; 60 e 120 kPa) at two phenological phases (vegetative and reproductive), and 5 replications. Overall, the results showed decrease of yield according to increase of soil water potentials. During the reproductive stage, Japanese cucumber plants were more sensitive to water deficit, resulting in further decrease in yield compared to applied water deficit during the vegetative stage of the culture.


2018 ◽  
Vol 36 (3) ◽  
pp. 299-305
Author(s):  
Cícero J Silva ◽  
Nadson C Pontes ◽  
Adelmo Golynski ◽  
Marcos B Braga ◽  
Alice M Quezado-Duval ◽  
...  

ABSTRACT Irrigation management is essential to promote appropriate plant growth and guarantee production and quality of the tomatoes for processing, increases the efficiency of nutrients use and contributes to ensure the sustainability of the production chain. This study was installed to evaluate productive performance of two processing tomato hybrids submitted to five water depths under drip irrigation system. Five levels of crop evapotranspiration (ETc) replacement (60%, 100%, 140%, 180% and 220%) and two tomato hybrids (BRS Sena and H 9992) were tested. The experimental design was a 5×2 factorial arranged in randomized complete block design with four replications. During the crop cycle, hybrids BRS Sena and H 9992 needed 692.20 and 418.43 mm of water, yielding 80 and 44.06 t ha-1, respectively. For both hybrids, the higher water productivity was observed when lower levels of irrigation were applied. Higher productivities and pulp yields of ‘BRS Sena’ and ‘H 9992’ were noticed when replacing 150-166% and 99-101% ETc, respectively. We observed that improving the performance of processing hybrid tomatoes is possible by adjusting irrigation levels for each hybrid according to growing conditions.


Author(s):  
Cícero J. da Silva ◽  
José A. Frizzone ◽  
César A. da Silva ◽  
Adelmo Golynski ◽  
Luiz F. M. da Silva ◽  
...  

ABSTRACT Irrigation management is essential for tomato fruits yield and quality. Therefore, the aim of this study was to evaluate the yield of tomatoes for industrial processing, ‘BRS Sena’ hybrid, subjected to water depths and irrigation suspension periods before harvest, irrigated by subsurface drip irrigation, in Goiás, Brazil (17º 49’ 19.5” S and 49º 12’ 11.3” W), in 2015 and 2016. The experiments were conducted under a randomized complete block design, with four replications, in split plots. Five irrigation levels (50, 75, 100, 125 and 150% of crop evapotranspiration) were evaluated in the plots and five irrigation suspension periods (0, 7, 14, 21 and 28 days before harvest) were evaluated in the subplots. At 125 days after transplanting the seedlings, the yields of green, mature, rotten fruits and total yield, water productivity and percentages of green, mature and rotten fruits were evaluated. The highest total fruit yields (105.86 and 58.60 t ha-1) were obtained with water replacements ranging from 125.47 (615.09 mm) to 132.11 (564.00 mm) of crop evapotranspiration, in the first and second year of experiment, respectively. Growing plants under water deficit and excess increased the incidence of rotten fruits and decreased that of mature fruits. Pre-harvest irrigation suspension reduced crop yield and incidence of green fruits and increased the incidence of rotten fruits. The highest water productivity by the crop occurred under water deficit, management that may be interesting for regions with water restrictions.


Author(s):  
Daniel F. de Carvalho ◽  
Daniela P. Gomes ◽  
Dionizio H. de Oliveira Neto ◽  
José G. M. Guerra ◽  
Janaína R. C. Rouws ◽  
...  

ABSTRACT This study was carried out to evaluate the contributions to the optimization of water use in a carrot crop under different forms of mulch using Gliricidia sepium, fertilization with castor bean cakes and irrigation water depths. The experiment was conducted in Seropédica, RJ, Brazil (22º 46’ S and 43º 41’ W), from June to September 2010. The experiment was conducted using a split-split-plot scheme (5 x 3 x 2), with four replicates. The five plots had irrigation depths corresponding to 0, 43, 72, 100 and 120% of crop evapotranspiration (ETc); the three subplots contained the different forms of mulch (whole leaves (WL) and chopped leaves and branches (CLB)) and the absence of mulch (AM); and the two sub-subplots contained either the presence (PF) or absence of fertilization (AF). Using time domain reflectometry (TDR) in the irrigation management, water depths ranging from 67.8 to 285.5 mm were applied. The use of mulch in association with fertilization led to higher yields and water-use efficiency (WUE) of the carrot plants, and the mulch composed of WL performed best. The application of irrigation depths corresponding to 97% of ETc promoted the highest carrot yields, although the highest values of WUE were observed, with irrigation depths corresponding to a range from 51 to 68% of ETc.


2017 ◽  
Vol 32 (1) ◽  
pp. 81
Author(s):  
Ramon Amaro de Sales ◽  
Clodoaldo Spadeto Ambrozim ◽  
Robson Prucoli Posse ◽  
Evandro Chaves de Oliveira ◽  
Sheila Prucoli Posse

Um dos fatores que pode afetar a produtividade do feijoeiro é a razão da evapotranspiração real  e a evapotranspiração da cultura, o qual indica a real quantidade de água que a planta consome em relação à quantidade de água máxima que a planta consumiria, também representada como Índice de Satisfação das Necessidades de Água. Com objetivo de determinar este índice para o feijoeiro, em seus respectivos estágios de desenvolvimento, visando melhorar o manejo de irrigação, ajustando-se à melhor lâmina de irrigação, bem como a máxima produtividade, foram analisadas as cultivares Majestoso e Valente, na região de Colatina-ES, durante o período de 12/07/2012 a 10/10/2012. Uma maior produtividade foi observada em função do aumento dos valores do Índice de Satisfação. A resposta foi a uma função quadrática, havendo um ponto a partir do qual a diminuição dos valores de ISNA reduz a produtividade das cultivares, à medida que reduz a lâmina de irrigação. O cultivar Majestoso apresentou maior tolerância à deficiência hídrica em relação a cultivar Valente, nas condições edafoclimáticas de Colatina/ES.PALAVRAS-CHAVE: fases fenológicas, evapotranspiração, deficiência hídrica. SATISFACTION INDEX OF WATER AND PRODUCTIVITY DEMANDS ON BEANS ON DIFFERENT IRRIGATION DEPTHS IN COLATINA – ESABSTRACT: One of the factors that can affect bean productivity is the ratio of actual evapotranspiration and crop evapotranspiration, which indicates the actual amount of water that the plant consumes in relation to the maximum amount of water the plant would consume, also represented as Index Of Water Needs Satisfaction. In order to determine this index for bean, in the respective stages of development, in order to improve irrigation management, adjusting to the best irrigation depth, as well as the maximum productivity, the cultivars Majestoso and Valente in de region of Colatina-ES, during the period from 07/07/2012 to 10/10/2012. Higher productivity was observed as a result of the increase in the Water Need Satisfaction Index, in which, as soil water deficit levels increased with the imposition of irrigation blades away from the sprinkler, ISNA presented lower values and consequently, its productivity, being noticed in the ISNA values below 0.83. The cultivar Majestoso presented greater tolerance to the water deficit in relation to Valente cultivar, in the edaphoclimatic conditions of Colatina-ES.KEYWORDS: phenological phases, evapotranspiration, water deficiency.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 531c-531
Author(s):  
Clint C. Shock ◽  
Erik B. G. Feibert ◽  
Monty Saunders

Seven potato cultivars were grown in an adequately irrigated check (100% of crop evapotranspiration replaced at -60 kPa) and three deficit irrigation regimes in order to evaluate varietal response to water stress and to evaluate nitrate leaching below the crop root zone in relation to the irrigation management. Potatoes were grown with sprinkler irrigation on silt loam in 1882 and 1993. Water stress treatments were achieved by partial or complete crop evapotranspiration replacement when soil water potential reached -60 or -80 kPa. In 1992, over all varieties, tuber yield and grade were significantly reduced by the two higher levels of water stress. In 1993, a relatively cool year, yield was reduced by water stress, but grade was not. Tuber internal quality was affected more by variety than by deficit irrigation both years. A comparison of pre-plant and post-harvest soil nitrate and ammonium shows that a small amount of nitrate moved from the top two feet of soil to the third and fourth foot in the check plots. Soil nitrogen accounting for the season showed large surpluses, indicating the importance of natural sources of available nitrogen.


2018 ◽  
Vol 31 (4) ◽  
pp. 832-842
Author(s):  
Clebson Gomes Gonçalves ◽  
Antonio Carlos da Silva Junior ◽  
Maynumi Scarano ◽  
Maria Renata Rocha Pereira ◽  
Dagoberto Martins

ABSTRACT Water deficit is a limiting factor for the soybean yield; it triggers different physiological and anatomical adaptations that have deleterious effects on the plants and can affect the selectivity of herbicides, causing production losses. In this context, the objective of this work was to evaluate the action of the chlorimuron-ethyl herbicide when applied at different stages of soybean plants, using conventional and transgenic cultivars, and different soil water potentials. A rate of 20 g ha-1 of the chlorimuron-ethyl herbicide was applied to two soybean cultivars (MG/BR46-Conquista - conventional, and BRS-Valiosa-RR - transgenic) at two phenological stages (V2 - first fully expanded trifoliate leaves, and V4 - third fully expanded trifoliate leaves), using three soil water potentials (-0.03 MPa, -0.07 MPa, and -0.5 MPa). Phytotoxicity, and plant height were evaluated at 3, 7, 14, and 21 days after the herbicide application. The shoot dry weight, root dry weight, and root system nodulation were evaluated. The soybean plants had lower phytotoxicity when subjected to application of chlorimuron-ethyl under water deficit conditions. The use of chlorimuron-ethyl reduced the growth and biomass of soybean plants and affected the plants' root system nodulation. The transgenic cultivar (BRS-Valiosa-RR) presented better performance when subjected to a moderate water deficit (-0.07 MPa), which contributes to biological nitrogen fixation.


2019 ◽  
Vol 99 (2) ◽  
pp. 182-194
Author(s):  
Yajin Hu ◽  
Nini Guo ◽  
Robert L. Hill ◽  
Shufang Wu ◽  
Qin’ge Dong ◽  
...  

Combined applications of mixed biomaterial amendments and polyacrylamide (MBAP) to maize in semiarid areas have the potential to improve soil physical properties such that improved crop performance may be obtained under deficient irrigation management. In this study, three MBAP applications were C0 (conventional N fertilization application) and C2 and C4 (MBAP applied at rates of 2 and 4 t ha−1, respectively); three irrigation levels were W3 (nearly full irrigation, 85%–100% of field capacity), W2 (light deficit irrigation, 65%–75% of field capacity), and W1 (medium deficit irrigation, 55%–65% of field capacity). Under the same irrigation level, the MBAP significantly decreased soil bulk densities and increased soil hydraulic conductivities and soil water contents. The effects of irrigation levels on soil bulk densities and soil saturated hydraulic conductivities were not significant. Consequently, MBAP improved soil conditions for maize growth and increased grain and biomass yields, especially at the two deficit irrigation levels. Compared with that of C0, grain yields for C2 and C4 were increased by 52.8% and 39.3% under W2, and by 23.5% and 13.7% under W1, respectively. The MBAP and irrigation had significant interaction effects on evapotranspiration during sowing to jointing and on plant heights at 32 d after sowing. The incorporation of MBAP (2 t ha−1) and chemical fertilizer (111.8 kg N ha−1) resulted in the greatest yields under light deficit irrigation and seemed the best approach to improve soil physical properties and sustain maize productivity using limited water resources in dryland regions.


Sign in / Sign up

Export Citation Format

Share Document