scholarly journals Methodology for designing lateral lines with microtubes operated under variable inlet pressure

Author(s):  
Geancarlo T. Katsurayama ◽  
Ezequiel Saretta ◽  
Antonio P. de Camargo ◽  
Tarlei A. Botrel ◽  
Conan A. Salvador

ABSTRACT Design of lateral lines consisting of microtubes enables to optimize water distribution uniformity. In addition, there must exist a range of pressures at the lateral line inlet in which the water distribution uniformity remains acceptable. Thus, such emitters are interesting for use in micro-irrigation systems supplied by alternative power sources, in which temporal variability in the electrical power supplied to the pumping systems normally occurs. This study presents a methodology for designing lateral lines with microtubes operated under varying pressure, using the step-by-step method in order to establish the recommended range of lateral line inlet pressures. The proposed methodology was validated over three replicates by testing maximum, minimum and optimum pressures. Deviation between estimated and observed values of flow rate was lower than 6%, indicating a satisfactory accuracy. Distribution uniformity of the system was higher than 95% under all pressures within the estimated range of values. Lateral lines can operate within a wide range of operating pressures and even so satisfactory results of distribution uniformity are obtained.

Irriga ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 14-18
Author(s):  
Taiane de Almeida Pereira ◽  
Alexandre Reuber Almeida da Silva ◽  
Marcos Makeison Moreira de Sousa ◽  
Cristian De França Santos ◽  
Daniel Lima dos Santos

PRESSÕES DE SERVIÇOS E SEUS EFEITOS NO DESEMPENHO DE UM SISTEMA DE IRRIGAÇÃO POR GOTEJAMENTO     TAIANE DE ALMEIDA PEREIRA1; ALEXANDRE REUBER ALMEIDA DA SILVA2; MARCOS MAKEISON MOREIRA DE SOUSA3; CRISTIAN DE FRANÇA SANTOS1 E DANIEL LIMA DOS SANTOS1   1Graduandos em Tecnologia em Irrigação e Drenagem, Instituto Federal de Educação Ciência e Tecnologia do Ceará – campus Iguatu, Rodovia Iguatu/Várzea Alegre, Km 05 – Vila Cajazeiras – Iguatu-CE. CEP: 63.503-790; taianeirrigacao@gmail; [email protected]; [email protected]; 2Professores do Curso de Tecnologia em Irrigação e Drenagem, Instituto Federal de Educação Ciência e Tecnologia do Ceará – campus Iguatu, Rodovia Iguatu/Várzea Alegre, Km 05 – Vila Cajazeiras – Iguatu-CE. CEP: 63.503-790, [email protected]; 3Mestrando em Engenharia Agrícola, Departamento de Engenharia Agrícola, Universidade Federal do Ceará – campus do Pici, Centro de Ciências Agrárias – CCA/UFC, Bloco 804, Fortaleza CE, CEP: 60.455-760; [email protected].     1 RESUMO   O presente trabalho teve como objetivo analisar a uniformidade de distribuição de em um sistema de irrigação localizada, do tipo gotejamento operando em condições de campo sob diferentes pressões de serviços, por meio da determinação dos Coeficiente de Uniformidade de Christiansen (CUC), do Coeficiente de Uniformidade de Distribuição (CUD) e do Coeficiente de Uniformidade Estatística (Us). Em campo, foram utilizadas 4 linhas laterais escolhidas ao acaso e com o auxílio de proveta e cronômetro, foram aferidos os volumes de água em 4 gotejadores de parede delgada, em três repetição em um tempo de 60 segundos, observando as 3 diferentes pressões de serviço (5,1; 10,2 e 15,3 mca). A média dos valores encontrados para o Coeficiente de Uniformidade de Christiansen (CUC), Coeficiente de Uniformidade de Distribuição (CUD) e o Coeficiente de Uniformidade Estatística (Us) são considerados pela literatura especializada como excelentes.  Todavia, na pressão de serviço de 5,1 mca, a uniformidade de distribuição de água tende a ser comprometida. Infere-se, portanto, que o sistema de irrigação está bem dimensionado evitando assim danos financeiros, independente das pressões de serviços nas quais o mesmo esteja operando.   Palavras-Chave: uniformidade, microirrigação, alturas manométricas.     PEREIRA, T. DE A.; SILVA, A. R. A. DA; SOUSA, M. M. M. DE; SANTOS, C. DE F.; SANTOS, D. L. DOS SERVICE PRESSURES AND THEIR EFFECTS ON THE PERFORMANCE OF A DRIP IRRIGATION SYSTEM     2 ABSTRACT   The objective of this work was to analyze the distribution uniformity of a drip irrigation system located in field conditions under different service pressures, through the determination of the Coefficient of Uniformity of Christiansen (CUC), Coefficient of Distribution Uniformity (CUD) and Statistical Uniformity Coefficient (Us). In the field, 4 randomly selected lateral lines were used and with the aid of a beaker and stop watch, the water volumes were measured in 4 thin-walled drippers in three repetitions in a time of 60 seconds, observing the 3 different service pressures (5.1, 10.2 and 15.3 microns). The mean values found for the Christiansen Uniformity Coefficient (CUC), Uniform Distribution Coefficient (CUD) and the Statistical Uniformity Coefficient (Us) are considered by the specialized literature to be excellent. However, in the service pressure of 5.1 mca, the uniformity of water distribution tends to be compromised. It is inferred, therefore, that the irrigation system is well-sized working, thus avoiding financial damages, regardless of the pressures of services in which it is operating.   Keywords: uniformity, micro-irrigation, manometric heights.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


2016 ◽  
Vol 36 (1) ◽  
pp. 36-45
Author(s):  
Alexsandro C. dos Santos Almeida ◽  
Ceres D. G. C. de Almeida ◽  
Tarlei A. Botrel ◽  
José A. Frizzone

ABSTRACT Microsprinkler non-pressure compensating nozzles usually show water flow variation along the lateral line. This study aimed at adapting microtubes into non-compensating system of microsprinklers previous installed in the field, as a self-compensated nozzle, to improve the flow uniformity along the lateral line. Microtubes were adapted to three types of commercial microsprinklers. Tests were conducted, both in the laboratory and in field, to evaluate the microsprinkler performance at four different flows (40, 50, 60 and 70 L h-1) under pressure head range from 75 to 245 kPa. Nozzles presented coefficient of flow-rate variation (CVq) lower than 5.5% and distribution uniformity (DU) greater than 95%, which are classified as excellent. The original spatial water distribution of the microsprinkler did not change by using microtube as a nozzle. This device adapted to non-pressure compensating microsprinklers are functional and operate effectively with flows ranging up to 70 L h-1. Small variations at microsprinkler flows along the lateral line can occur, however, at random manner, which is common for pressure-compensating nozzles. Therefore, the microtube technique is able to control pressure variation in microsprinklers.


2020 ◽  
Vol 28 ◽  
pp. 140-147
Author(s):  
João Batista Tolentino Júnior ◽  
Fernanda Oliveira da Silva

There are several models for hydraulic designs and optimization of lateral lines depending on the existing pressure head profile and flow which allows designing longer lateral lines, therefore decreasing the cost of the system implementation. A model has been developed to calculate the pressure head and required flow rate at the inlet of lateral line using the back step method. A set of equations was implemented in an algorithm in the R language. For the calculations, the following variables must be provided: pressure head at the end of the lateral line (Hend), coefficients K and x of the characteristic equation (flow-pressure) of the emitter, pipe diameter (D), emitter spacing (Se) and number of emitters (Ne). For the evaluation of the model, the pressure head at the end of the lateral line, the pipe diameter and the number of emitters were varied within the established limits. Relationships between these variables were established by regression analysis using the least-squares method. The model shown in the study was suitable for the calculation of the pressure head and flow rate profile along the lateral line. The power, plateau, exponential and linear equations were adjusted to describe these relationships. These equations can help in the design of irrigation systems by simplifying the procedures in order to meet the design criteria. Also, the proposed equations allow evaluation of the systems still in the design phase.


1999 ◽  
Vol 5 (3-4) ◽  
Author(s):  
J. Kovács ◽  
J. Nyéki ◽  
Z. Szabó ◽  
F. Ligetvári ◽  
M. Soltész

Climatic and soil conditions are highly suitable for most temperate fruit species and promise profitable yields with good quality. An accurate choice of the growing site is, however, decisive because of the wide range agro-climatic variation an soils within the country. One of the most important factors is the annual precipitation which does not exceed, in general, 700 mm. The aims of irrigation practices are, succinctly speaking, the improvement of quantity and security of yields and the guarantee of quality. The relative importance of those criteria changes according to the fruit species. In up to date apple, pear and cherry production, micro-irrigation systems are mainly considered. According to recent experiences, the micro-jet type of water distribution should be preferred to the dripping system. In cherries, the choice of the method is motivated by the need to prevent fruit cracking. Most of the peach and apricot plantations are located on the dry and moderately dry regions of the country. Because of the late freezes, the improvement of security is crucial. There the investment of irrigation systems should concentrate to the possibility of anti-freeze sprays. High water requirements of plums are met in Hungary by irrigation where the method should be decided at the plantation and adapted to the harvesting procedure which could be mechanised or (in high density plantations) picked by hand. Sour cherries are perhaps the less dependent on watering under Hungarian conditions. Yields in small fruits: currents, gooseberries, raspberries and strawberries could be increased by irrigation to 40-50 % and may improve quality too. In those cultures the system of moving flexible wing tubes are considered to be the best irrigation technique.


1993 ◽  
Vol 32 (2) ◽  
pp. 226-228
Author(s):  
Zakir Hussain

The book; under review provides a valuable account of the issues and factors in managing the irrigation system, and presents a lucid and thorough discussion on the performance of the irrigation bureaucracies. It comprises two parts: the first outlines the factors affecting irrigation performance under a wide range of topics in the first five chapters. In Chapter One, the authors have attempted to assess the performance of the irrigation bureaucracies, conceptualise irrigation management issues, and build an empirical base for analysis while drawing upon the experience of ten country cases in Asia, Africa, and Latin America. The Second Chapter focuses on the variations in the management structures identified and the types of irrigation systems; and it defines the variables of the management structures. The activities and objectives of irrigation management are discussed in Chapter Three. The objectives include: greater production and productivity of irrigation projects; improved water distribution; reduction in conflicts; greater resource mobilisation and a sustained system performance. The authors also highlight the performance criterion in this chapter. They identify about six contextual factors which affect the objectives and the performance of irrigation, which are discussed in detail in Chapter Four. In Chapter Five, some organisational variables, which would lead to improvements in irrigation, are examined.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


2014 ◽  
Vol 10 (S313) ◽  
pp. 260-265
Author(s):  
D. M. Worrall ◽  
M. Birkinshaw

AbstractMost X-ray studies of radio-mode feedback have concentrated on locally-abundant low-power radio sources in relatively rich cluster environments. But the scaling found between mechanical and radiative power, when combined with the radio luminosity function, means that half of the heating in the local Universe is expected from higher-power sources, which lie within a factor of about three of the FRI/II transition, and these sources encounter a wide range of atmosphere properties. We summarize what is observed at FRI/II transition powers from a complete sample observed with modest Chandra exposure times. We then discuss two systems with deep Chandra data. In one we find that the work done in driving shocks exceeds that in evacuating cavities. This source also displays a remarkable jet-cloud interaction, and revealing hotspot X-ray emission. In the second we find evidence of radio-emitting plasma running along boundaries between gas of different temperature, apparently lubricating the gas flows and inhibiting heat transfer, and itself being heavily structured by the process.


2019 ◽  
Vol 16 (03) ◽  
pp. 1950027
Author(s):  
Surapree Maolikul ◽  
Thira Chavarnakul ◽  
Somchai Kiatgamolchai

Thermoelectrics, an energy-conversion technology, has been developed for its potential to support portable electronics with an innovative power source. Primarily focusing on the metropolitan market in Thailand, the study, thus, aimed at the market insight into portable electronics users’ characteristics and opinions of thermoelectric-generator (TEG) technology commercialization. The business research was conducted to analyze their behaviors for power-supply lacking problems, encountering heat or cold sources, purchasing decision for a TEG-based charger and key decision factors. For practical applications, an innovative TEG-based charger should be more flexible by harnessing various heat or cold sources from ambient situations to generate electrical power.


Sign in / Sign up

Export Citation Format

Share Document