scholarly journals Effect of surface treatments on the adhesive properties of metallic brackets on fluorotic enamel

2020 ◽  
Vol 25 (4) ◽  
pp. 59-67
Author(s):  
Mariana Huilcapi ◽  
Ana Armas-Vega ◽  
Andres Felipe Millan Cardenas ◽  
Lucila Cristina Rodrigues Araujo ◽  
Jessica Bedoya Ocampo ◽  
...  

ABSTRACT Objective: To compare the effectiveness of the pretreatment with sandblasting and deproteinization with NaOCl on bond strength (SBS), in situ conversion degree (CD) of brackets in fluorotic enamel, and enamel etching pattern. Methods: A total of 90 non-carious maxillary premolars were used. The teeth were then assigned to six experimental groups according to: enamel surface (sound and fluorotic enamel); surface treatment (Regular etch with 37% phosphoric acid [RE]; 5.2% sodium hypochlorite + phosphoric acid [NaOCl + RE]; sandblasting + phosphoric acid [sandblasting + RE]). After storage in distilled water (37°C/24h), the specimens were tested at 1 mm/min until failure (SBS). Enamel-resin cement interfaces were evaluated for CD using micro-Raman spectroscopy. The enamel-etching pattern was evaluated under a scanning electron microscope. Data from SBS and in situ CD values were analyzed using ANOVA two-away and Tukey test (α=0.05). The enamel etching pattern was evaluated only qualitatively. Results: For sound enamel, RE showed the highest SBS values, when compared to NaOCl + RE and Sandblasting + RE groups (p< 0.01). Regarding CD, only NaOCl + RE significantly compromised the mean DC, in comparison with other groups (p= 0.002). For fluorotic enamel, the Sandblasting + RE group significantly increased the mean SBS values, in comparison with RE group (p= 0.01) and no significant change was observed for CD (p> 0.52). Conclusions: The application of NaOCl or sandblasting associated to phosphoric acid improved the SBS of the brackets in fluorotic enamel without compromising the CD of the resin cement, with improving of enamel interprismatic conditioning.

2016 ◽  
Vol 41 (5) ◽  
pp. 481-490 ◽  
Author(s):  
AM Cardenas ◽  
F Siqueira ◽  
J Rocha ◽  
AL Szesz ◽  
M Anwar ◽  
...  

SUMMARY Objectives: To evaluate the effect of application protocol in resin–enamel microshear bond strength (μSBS), in situ degree of conversion, and etching pattern of three universal adhesive systems. Methods and Materials: Sixty-three extracted third molars were sectioned in four parts (buccal, lingual, and proximals) and divided into nine groups, according to the combination of the main factors—Adhesive (Clearfil Universal, Kuraray Noritake Dental Inc, Tokyo, Japan; Futurabond U, VOCO, Cuxhaven, Germany; and Scotchbond Universal Adhesive, 3M ESPE, St Paul, MN, USA)—and enamel treatment/application time (etch-and-rinse mode [ER], self-etch [SE] application for 20 seconds [SE20], and SE application for 40 seconds [SE40]). Specimens were stored in water (37°C/24 h) and tested at 1.0 mm/min (μSBS). The degree of conversion of the adhesives at the resin–enamel interfaces was evaluated using micro-Raman spectroscopy. The enamel-etching pattern was evaluated under a scanning electron microscope. Data were analyzed with two-way analysis of variance and Tukey test (α=0.05). Results: In general, the application of the universal adhesives in the SE40 produced μSBS and degree of conversion that were higher than in the SE20 (p&lt;0.01) and similar to the ER mode. The deepest enamel-etching pattern was obtained in the ER mode, followed by the SE40. Conclusions: The active and prolonged application of universal adhesives in the SE mode may be a viable alternative to increase the degree of conversion, etching pattern, and resin–enamel bond strength.


2006 ◽  
Vol 14 (6) ◽  
pp. 427-435 ◽  
Author(s):  
Mirela Sanae Shinohara ◽  
Marcelo Tavares de Oliveira ◽  
Vinícius Di Hipólito ◽  
Marcelo Giannini ◽  
Mario Fernando de Goes

ABSTRACT OBJECTIVE: Although self-etching bonding systems (SES) are indicated to prepare dental enamel for bonding, concerns have been expressed regarding their effectiveness. The aim of this study was to analyze the etching pattern (EP) of nine SES in comparison with 35% and 34% phosphoric acid etchants (FA) on intact (IN) and ground (GR) enamel surface. MATERIALS AND METHODS: Twenty-two human third molars were sectioned in mesial-distal and buccal-lingual directions, and four dental fragments were obtained from each tooth. Half of the fragments were ground using 600-grit SiC paper and the other half remained intact. The fragments were randomly assigned into 22 groups, according to the texture of enamel surface (IN and GR) and the technique to etch the enamel (34% FA, 35% FA, AdheSE primer; Brush & Bond; Clearfil Protect Bond primer; iBond; One-up Bond F; OptiBond Solo Plus primer; Tyrian SPE primer; Unifil Bond primer and Xeno III). Conditioners were applied to IN and GR enamel surfaces, according to the manufacturer's instructions. Specimens etched with phosphoric acids were washed with water, while the surfaces treated with SES were submitted to alternate rinsing with alcohol and acetone. The specimens were dried, sputter-coated and examined under a scanning electron microscope. RESULTS: For both IN and GR enamel surfaces, the EP of 34 and 35% FA was deeper and more homogeneous in comparison to EP of SES, except for Tyrian SPE. The acidic monomer action of self-etching systems was more effective on GR enamel. CONCLUSION: Most of the SES are less aggressive than phosphoric acid etchants and their etching effects were reduced on intact enamel surfaces.


2015 ◽  
Vol 40 (3) ◽  
pp. E112-E121 ◽  
Author(s):  
HA St Germain ◽  
TH St Germain

SUMMARY In this laboratory research, shear bond strength (SBS) and mode of failure of veneers rebonded to enamel in shear compression were determined. Three groups (A, B, and C; n=10 each) of mounted molar teeth were finished flat using wet 600-grit silicon carbide paper, and 30 leucite-reinforced porcelain veneers (5.0 × 0.75 mm) were air abraded on the internal surface with 50 μm aluminum oxide, etched with 9.5% hydrofluoric acid, and silanated. The control group (A) veneer specimens were bonded to enamel after etching with 37% phosphoric acid using bonding resin and a dual cure resin composite cement. Groups B and C were prepared similarly to group A with the exception that a release agent was placed before the veneer was positioned on the prepared enamel surface and the resin cement was subsequently light activated. The debonded veneers from groups B and C were placed in a casting burnout oven and heated to 454°C/850°F for 10 minutes to completely carbonize the resin cement and stay below the glass transition temperature (Tg) of the leucite-reinforced porcelain. The recovered veneers were then prepared for bonding. The previously bonded enamel surfaces in group B were air abraded using 50 μm aluminum oxide followed by 37% phosphoric acid etching, while group C enamel specimens were acid etched only. All specimens were thermocycled between 5°C and 55°C for 2000 cycles using a 30-second dwell time and stored in 37°C deionized water for 2 weeks. SBS was determined at a crosshead speed of 1.0 mm/min. SBS results in MPa for the groups were (A) = 20.6±5.1, (B) = 18.1±5.5, and (C) = 17.2±6.1. One-way analysis of variance indicated that there were no significant interactions (α=0.05), and Tukey-Kramer post hoc comparisons (α=0.05) detected no significant pairwise differences. An adhesive mode of failure at the enamel interface was observed to occur more often in the experimental groups (B = 40%, C = 50%). Rebonding the veneers produced SBS values that were not significantly different from the control group. Also, no significant difference in SBS values were observed whether the debonded enamel surface was air abraded and acid etched or acid etched only.


2010 ◽  
Vol 35 (2) ◽  
pp. 169-172 ◽  
Author(s):  
Bhoomika Ahuja ◽  
Ramakrishna Yeluri ◽  
M Sudhindra Baliga ◽  
AK Munshi

Objectives: This study was undertaken to evaluate the topographical features of enamel surface deproteinized with sodium hypochlorite (NaOCl) and etched with phosphoric acid (H3PO4) compared to phosphoric acid alone using Scanning Electron Microscopic (SEM) Analysis. Study Design: 30 enamel blocks of 1mm2 from ten human sound extracted permanent molars were obtained and treated as under: Group 1 (10 blocks): Enamel surface was etched with 37% H3PO4 gel for 15 seconds. Group 2 (10 blocks):Enamel surface was treated with 5.25% NaOCl for 60 seconds and then etched with 37% H3PO4 gel for 15 seconds. 10 enamel blocks were included in the control group where no treatment was carried out. The samples were subjected to SEM analysis and 5 microphotographs of each sample were obtained at 500X magnification and evaluated for the quality of etching pattern of the enamel in percentage (%) using Auto-CAD 2007 software. Results: Mean values of etching pattern in Group 1 being 55.76% and Group 2 being 53.58%. No significant difference was observed between the two groups. Conclusion: The use of 37% phosphoric acid for 15 seconds still remains the best method for pretreatment of enamel.


2010 ◽  
Vol 04 (04) ◽  
pp. 418-428 ◽  
Author(s):  
Ihab M. Ibrahim ◽  
Dina W. Elkassas ◽  
Mai M. Yousry

Objectives: This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems.Methods: Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9–1.0), intermediary strong AdheSE (pH=1.6–1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM).Results: Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features.Conclusions: Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel. (Eur J Dent 2010;4:418-428)


2010 ◽  
Vol 35 (1) ◽  
pp. 47-51 ◽  
Author(s):  
R Espinosa ◽  
R Valencia ◽  
M Uribe ◽  
I Ceja ◽  
J Cruz ◽  
...  

Purpose: The goal of this in vitro study was to identify the topographical features of deproteinized (NaOCl)and etched with phosphoric acid (H3PO4) enamel surface, compared to phosphoric acid surface alone with a Resin Replica model. Materials: Ten extracted lower first and second permanent molars were polished with pumice and water, and then divided into 3 equal buccal sections having similar physical and chemical properties. The enamel surfaces of each group were subjected to the following treatments: Group A: Acid Etching with H3PO4 37% for 15 seconds. Group B: Sodium Hypochlorite (NaOCl) 5.25% for 60 seconds followed by Acid Etching with H3PO4 37% for 15 seconds. Group C; No treatment (control). All the samples were treated as follow: Adhesive and resin were applied to all groups after A, B and C treatment were performed; Then enamel/dentin decalcification and deproteinization and topographic SEM Resin Replica assessment were used to identify resin tags enamel surface quality penetration. Results showed that group B reached an area of 7.52mm2 of the total surface, with a 5.68 mm2 (73%)resin tag penetration equivalent type I and II etching pattern, 1.71 mm2 (26%) equivalent to type III etching pattern and 0.07 mm2 (1%)unaffected surface. Followed by group A with 7.48 mm2 of the total surface, with a 3.47 mm2 (46 %)resin tag penetration equivalent to type I and II etching pattern, 3.30 mm2 (45 %)equivalent to type III etching pattern and 0.71 mm2, and (9 %) unaffected surface. Group C did not show any resin tag penetration. A significant statistical difference (P &lt;0,001) existed between groups A and B in resin quality penetration, leading to the conclusion that when the enamel is deproteinizated with 5.25% NaOCl for 1 minute prior H3PO4,the surface and topographical features of the replica resin penetration surface increases significantly with type I-II etching pattern.


Author(s):  
Xianghong Tong ◽  
Oliver Pohland ◽  
J. Murray Gibson

The nucleation and initial stage of Pd2Si crystals on Si(111) surface is studied in situ using an Ultra-High Vacuum (UHV) Transmission Electron Microscope (TEM). A modified JEOL 200CX TEM is used for the study. The Si(111) sample is prepared by chemical thinning and is cleaned inside the UHV chamber with base pressure of 1x10−9 τ. A Pd film of 20 Å thick is deposited on to the Si(111) sample in situ using a built-in mini evaporator. This room temperature deposited Pd film is thermally annealed subsequently to form Pd2Si crystals. Surface sensitive dark field imaging is used for the study to reveal the effect of surface and interface steps.The initial growth of the Pd2Si has three stages: nucleation, growth of the nuclei and coalescence of the nuclei. Our experiments shows that the nucleation of the Pd2Si crystal occurs randomly and almost instantaneously on the terraces upon thermal annealing or electron irradiation.


Author(s):  
Kranti Singh ◽  
Surajpal Verma ◽  
Shyam Prasad ◽  
Indu Bala

Ciprofloxacin hydrochloride loaded Eudragit RS100 nanoparticles were prepared by using w/o/w emulsification (multiple emulsification) solvent evaporation followed by drying of nanoparticles at 50°C. The nanoparticles were further incorporated into the pH-triggered in situ gel forming system which was prepared using Carbopol 940 in combination with HPMC as viscosifying agent. The developed nanoparticles was evaluated for particle size, zeta potential value and loading efficiency; nanoparticle incorporated in situ gelling system was evaluated for pH, clarity, gelling strength, rheological studies, in-vitro release studies and ex-vivo precorneal permeation studies. The nanopaticle showed the mean particle size varying between 263.5nm - 325.9 nm with the mean zeta potential value of -5.91 mV to -8.13 mV and drug loading capacity varied individually between 72.50% to 98.70% w/w. The formulation was clear with no suspended particles, showed good gelling properties. The gelling was quick and remained for longer time period. The developed formulation was therapeutically efficacious, stable and non-irritant. It provided the sustained release of drug over a period of 8-10 hours.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Md Arifuzzaman ◽  
Muhammad Aniq Gul ◽  
Kaffayatullah Khan ◽  
S. M. Zakir Hossain

There are several environmental factors such as temperature differential, moisture, oxidation, etc. that affect the extended life of the modified asphalt influencing its desired adhesive properties. Knowledge of the properties of asphalt adhesives can help to provide a more resilient and durable asphalt surface. In this study, a hybrid of Bayesian optimization algorithm and support vector regression approach is recommended to predict the adhesion force of asphalt. The effects of three important variables viz., conditions (fresh, wet and aged), binder types (base, 4% SB, 5% SB, 4% SBS and 5% SBS), and Carbon Nano Tube doses (0.5%, 1.0% and 1.5%) on adhesive force are taken into consideration. Real-life experimental data (405 specimens) are considered for model development. Using atomic force microscopy, the adhesive strength of nanoscales of test specimens is determined according to functional groups on the asphalt. It is found that the model predictions overlap with the experimental data with a high R2 of 90.5% and relative deviation are scattered around zero line. Besides, the mean, median and standard deviations of experimental and the predicted values are very close. In addition, the mean absolute Error, root mean square error and fractional bias values were found to be low, indicating the high performance of the developed model.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Chunming Huang ◽  
Wei Li ◽  
Shaodong Zhang ◽  
Gang Chen ◽  
Kaiming Huang ◽  
...  

AbstractThe eastward- and westward-traveling 10-day waves with zonal wavenumbers up to 6 from surface to the middle mesosphere during the recent 12 years from 2007 to 2018 are deduced from MERRA-2 data. On the basis of climatology study, the westward-propagating wave with zonal wave number 1 (W1) and eastward-propagating waves with zonal wave numbers 1 (E1) and 2 (E2) are identified as the dominant traveling ones. They are all active at mid- and high-latitudes above the troposphere and display notable month-to-month variations. The W1 and E2 waves are strong in the NH from December to March and in the SH from June to October, respectively, while the E1 wave is active in the SH from August to October and also in the NH from December to February. Further case study on E1 and E2 waves shows that their latitude–altitude structures are dependent on the transmission condition of the background atmosphere. The presence of these two waves in the stratosphere and mesosphere might have originated from the downward-propagating wave excited in the mesosphere by the mean flow instability, the upward-propagating wave from the troposphere, and/or in situ excited wave in the stratosphere. The two eastward waves can exert strong zonal forcing on the mean flow in the stratosphere and mesosphere in specific periods. Compared with E2 wave, the dramatic forcing from the E1 waves is located in the poleward regions.


Sign in / Sign up

Export Citation Format

Share Document