scholarly journals Development and fruit yield of strawberry plants as affected by crown diameter and plantlet growing period

2010 ◽  
Vol 45 (7) ◽  
pp. 730-736 ◽  
Author(s):  
Carine Cocco ◽  
Jerônimo Luiz Andriolo ◽  
Lígia Erpen ◽  
Francieli Lima Cardoso ◽  
Gustavo Spreckelsen Casagrande

The objective of this work was to evaluate the influence of crown diameter and growing period of runner tips in 128 cell-trays on growth and yield of strawberry in the field. Treatments consisted of three classes of runner tip crown diameters, between 2.0 to 3.9 mm; 4.0 to 5.5 mm and 5.6 to 7.0 mm, respectively, and four growing periods in trays, 24; 39; 54 and 69 days, respectively. Higher shoot dry mass of transplants at planting and earlier yield of plants in the field were obtained in transplants grown for 69 days in trays. Larger runner tips lead to more vigorous transplants at planting and plants with higher vegetative growth in the field, with minor impact on yield. Increasing the growing time of runner tips in trays improved early fruit yield and decreased plant vegetative growth in the field.

HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 76-79 ◽  
Author(s):  
J.M. Mutisya ◽  
J.A. Sullivan ◽  
S. Couling ◽  
J.C. Sutton ◽  
J. Zheng

The relationship between severity of leaf scorch epidemics, caused by Diplocarpon earlianum, and components of vegetative growth and fruit yield was examined in `Kent' strawberry (Fragaria ×ananassa Duch.). Plants were treated in July with six densities of initial inoculum of the pathogen, and severity of leaf scorch was assessed at 2-week intervals from late July to late October. After an analysis of vegetative growth in late October, plants were overwintered in the field or grown in a greenhouse, and later assessed for yield components. Relationships between area under the disease progress curve (AUDPC) and plant growth and yield components were examined by regression analysis. Significant negative linear relationships were found between AUDPC values and number of green leaves, leaf area, leaf dry weight, crown number, crown dry mass, and root dry weight. Significant negative relationships were also found between AUDPC values and number of flowers and inflorescences, and total and marketable berries in the subsequent season, in plants maintained in the field or in the greenhouse. Mean berry weight was not significantly affected. Reduction in the number of crowns in plants affected by leaf scorch was a major factor limiting the yield of diseased plants. In an analysis of regrowth at seven weeks after fruit harvest, a significant negative linear relationships was found between AUDPC values and each growth component except crown dry weight. Collectively, the data provide a rationale to optimize timing of treatments, such as chemical fungicides or microbial agents, to control leaf scorch in August, September and October and thereby promote berry yield in the subsequent season.


1999 ◽  
Vol 50 (2) ◽  
pp. 211 ◽  
Author(s):  
D. O. Huett ◽  
G. R. Stewart

The effect of timing of nitrogen (N) application as 15N-enriched ammonium sulfate (50 kg N/ha) on the growth response and N uptake by vegetative and reproductive tissues was investigated in the low-chill peach cv. Flordagem growing on a krasnozem soil at Alstonville. Nitrogen was applied in late August, late September, late October, mid February, and early May. Tree parts were sampled for 15N at 4 and 8 weeks after application and after fruit harvest in December the following season. After fruit yield was measured, trees were excavated and divided into parts for dry weight and nutrient concentration determinations, and fertiliser N recovery and to estimate tree nutrient removal. Nitrogen enrichment was detected in all plant parts within 4 weeks of N application, irrespective of timing, and was greatest in rapidly growing tissues such as laterals, leaves, and fruit. The most rapid (P < 0.05) 15N enrichment in vegetative tissues resulted from September, October, and February N applications and for fruit from a September application. The level of enrichment 4 weeks after fertiliser N application was similar for vegetative and reproductive tissues. The timing of N application in the first season had no effect on fruit yield and vegetative growth the following season. At tree removal, the recovery of fertiliser N in most tree parts increased (P < 0.05) as fertiliser N application was delayed from October to May the previous season. Maximum contribution of absorbed N to whole tree N was 10–11% for laterals, leaf, and fruit. Data from this study indicate that vegetative and reproductive growth have similar demand for absorbed N, and that uptake of fertiliser N is most rapid when an application precedes a period of rapid growth. Over 2 seasons, recovery of applied fertiliser N was 14.9–18.0% in the tree, confirming that stored N and the soil N pool are the dominant sources of tree N. The recovery of fertiliser N from the May application was 18% even though uptake in all tree parts including roots at 4 weeks after application was very low, indicating that tree fertiliser N uptake occurred when growth resumed after the dormant winter period. The low proportion and recovery of fertiliser N in the tree confirm the lack of immediate influence of applied N to vegetative growth and yield. Annual crop nutrient removal is a sound basis for fertiliser recommendations, and for the Flordagem orchard (1000 trees/ha), it consisted of fruit plus 70% of laterals (removed at pruning) plus 20% of leaf. Removal in vegetative tissues was relatively low at (kg/ha) 14 N, 1 P, 12 K, 13 Ca, and 2 Mg. The addition of fruit at a yield of 25 t/ha increased total nutrient removal to (kg/ha) 46 N, 5 P, 54 K, 14 Ca, and 5 Mg.


2006 ◽  
Vol 86 (Special Issue) ◽  
pp. 1391-1394
Author(s):  
F. O. Odeleye ◽  
O. M. O. Odeleye ◽  
J. K. Vessey ◽  
Z. Dong ◽  
H. N. Ebuzome

A field trial was conducted at the experimental farm of the Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria, to determine the growth and yield response of cucumber (cv. Poinsett) to timing of fertilizer application. Fertilizer (20:10:10), at the rate of 150 kg N ha-1, was applied at: planting, 3 weeks after planting (WAP) and 6 WAP. Similarly, split applications were given at planting + 3 WAP, at planting + 6 WAP and at 3 WAP + 6 WAP. The experimental design was a randomized complete block with seven treatments (six fertilizer application treatments plus a non fertilizer control) and four replications. Means were separated using Duncan’s Multiple Range Test at the 5% level of significance. In general, plants that were fertilized performed better than control plants in terms of vegetative growth and yield. A split application at 3 WAP + 6 WAP performed the best in terms of vegetative growth and fruit yield. Fertilizer applied once-over at 6 WAP was the least beneficial; application of fertilizer once-over at planting, or a split application at planting + 3 WAP, resulted in a high level of vegetative growth but lower fruit yield compared with the split application at 3 WAP + 6 WAP. Key words: Cucumber, N-P-K., time of application, vegetative growth, fruit yield


2011 ◽  
Vol 68 (2) ◽  
pp. 191-199 ◽  
Author(s):  
María Teresa Castellanos ◽  
María Jesús Cabello ◽  
María del Carmen Cartagena ◽  
Ana María Tarquis ◽  
Augusto Arce ◽  
...  

Nitrogen (N) is an important nutrient for melon (Cucumis melo L.) production. However there is scanty information about the amount necessary to maintain an appropriate balance between growth and yield. Melon vegetative organs must develop sufficiently to intercept light and accumulate water and nutrients but it is also important to obtain a large reproductive-vegetative dry weight ratio to maximize the fruit yield. We evaluated the influence of different N amounts on the growth, production of dry matter and fruit yield of a melon 'Piel de sapo' type. A three-year field experiment was carried out from May to September. Melons were subjected to an irrigation depth of 100% crop evapotranspiration and to 11 N fertilization rates, ranging 11 to 393 kg ha-1 in the three years. The dry matter production of leaves and stems increased as the N amount increased. The dry matter of the whole plant was affected similarly, while the fruit dry matter decreased as the N amount was increased above 112, 93 and 95 kg ha-1, in 2005, 2006 and 2007, respectively. The maximum Leaf Area Index (LAI), 3.1, was obtained at 393 kg ha-1 of N. The lowest N supply reduced the fruit yield by 21%, while the highest increased the vegetative growth, LAI and Leaf Area Duration (LAD), but reduced yield by 24% relative to the N93 treatment. Excessive applications of N increase vegetative growth at the expense of reproductive growth. For this melon type, rates about 90-100 kg ha-1 of N are sufficient for adequate plant growth, development and maximum production. To obtain fruit yield close to the maximum, the leaf N concentration at the end of the crop cycle should be higher than 19.5 g kg-1.


2011 ◽  
Vol 29 (4) ◽  
pp. 516-519 ◽  
Author(s):  
Jerônimo L Andriolo ◽  
Lígia Erpen ◽  
Francieli L Cardoso ◽  
Carine Cocco ◽  
Gustavo S Casagrande ◽  
...  

In soilless grown strawberry crops, the nitrogen concentration of the nutrient solution affects plant growth and fruit yield and quality. The present research was conducted to determine the effect of nitrogen concentration in the nutrient solution on plant growth and development and fruit yield and quality of this crop. Treatments consisted of five nutrient solutions at nitrogen concentrations of 6.5 (T1), 8.0 (T2), 9.5 (T3), 11.0 (T4) and 12.5 (T5) mmol L-1, in an entirely randomised experimental design with four replications. Ripe fruit yield was determined during the harvest period from June 6th to November 27th, 2009. Number of leaves, shoot and root dry mass and crown diameter were determined at the later date. Number of leaves, shoot and root dry mass and crown diameter decreased by effect of increasing N concentrations in the nutrient solution. Fruit yield and fruit size fitted a polynomial model, with maximum values at 8.9 mmol N L-1. The N concentration used for the strawberry crop in soilless growing systems can be reduced to 8.9 mmol L-1 without any reduction in fruit yield.


2021 ◽  
Vol 22 (7) ◽  
pp. 3297
Author(s):  
Amparo Gálvez ◽  
Alfonso Albacete ◽  
Cristina Martínez-Andújar ◽  
Francisco M. del Amor ◽  
Josefa López-Marín

Salinity provokes an imbalance of vegetative to generative growth, thus impairing crop productivity. Unlike breeding strategies, grafting is a direct and quick alternative to improve salinity tolerance in horticultural crops, through rebalancing plant development. Providing that hormones play a key role in plant growth and development and stress responses, we hypothesized that rootstock-mediated reallocation of vegetative growth and yield under salinity was associated with changes in the hormonal balance. To test this hypothesis, the hybrid pepper variety (Capsicum annuum L. “Gacela F1”) was either non-grafted or grafted onto three commercial rootstocks (Creonte, Atlante, and Terrano) and plants were grown in a greenhouse under control (0 mM NaCl) and moderate salinity (35 mM NaCl) conditions. Differential vegetative growth versus fruit yield responses were induced by rootstock and salinity. Atlante strongly increased shoot and root fresh weight with respect to the non-grafted Gacela plants associated with improved photosynthetic rate and K+ homeostasis under salinity. The invigorating effect of Atlante can be explained by an efficient balance between cytokinins (CKs) and abscisic acid (ABA). Creonte improved fruit yield and maintained the reproductive to vegetative ratio under salinity as a consequence of its capacity to induce biomass reallocation and to avoid Na+ accumulation in the shoot. The physiological responses associated with yield stability in Creonte were mediated by the inverse regulation of CKs and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Finally, Terrano limited the accumulation of gibberellins in the shoot thus reducing plant height. Despite scion compactness induced by Terrano, both vegetative and reproductive biomass were maintained under salinity through ABA-mediated control of water relations and K+ homeostasis. Our data demonstrate that the contrasting developmental and physiological responses induced by the rootstock genotype in salinized pepper plants were critically mediated by hormones. This will be particularly important for rootstock breeding programs to improve salinity tolerance by focusing on hormonal traits.


Author(s):  
Hemant Kumar Singh ◽  
Bholanath Saha ◽  
Manoj Kumar Roy ◽  
R. K. Sohane

Zinc and boron are two most important micronutrients found deficient in the intensive vegetable growing fields of the northern parts of Bihar, India. Keeping the above in view, the field trials were conducted in ten farmers’ fields during Rabi season of 2016-17 and 2017-18 with four treatments consisting of: i) Farmers’ practice/control (T1), ii) 10.0 kg Zn + 1.0 kg B / ha (T2), iii) 5 t farmyard manure (FYM) ha-1 with 5.0 kg Zn ha-1 as basal + foliar spray of Zn twice @ 0.5% ZnSO4.7H2O solution - one at maximum vegetative growth stage and another at flower initiation stage + 1.0 kg B ha-1 (T3) and iv) 5t FYM ha-1 with 5.0 kg Zn ha-1 as basal + foliar spray of Zn twice @ 0.5% ZnSO4.7H2O solution - one at maximum vegetative growth stage and another at flower initiation stage with 2.0 kg B ha-1 (T4). The field trials were conducted with randomized complete block design under the supervision of Krishi Vigyan Kendra, Kishanganj, Bihar. Results revealed that the maximum fruit yield of 280.51 q/ha was recorded with 12.03 maximum fruit number and early days to first fruit harvest (60.86) by the application of 5t FYM ha-1, 5.0 kg Zn ha-1 as basal + foliar spray of Zn twice @ 0.5% ZnSO4.7H2O solution  applied one at maximum vegetative growth stage and another at flower initiation stage with 2.0 kg B ha-1  as basal application in comparison to farmer practice with 189.79 q/ha fruit yield, 6.07 numbers of fruit and days to first fruit harvest (70.11). This treatment also recorded the highest B:C ratio (3.82) in comparison to farmer practice (2.93) indicating an economically better response to farmers of the intensively brinjal cultivated region of the state.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1161f-1161
Author(s):  
John D. Lea-Cox ◽  
Irwin E. Smith

Pine bark is utilized as a substrate in citrus nurseries in South Africa. The Nitrogen (N) content of pine bark is inherently low, and due to the volubility of N, must be supplied on a continual basis to ensure optimum growth rates of young citrus nursery stock. Three citrus rootstock (rough lemon, carrizo citrange and cleopatra mandarin) showed no difference in stem diameter or total dry mass (TDM) when supplied N at concentrations between 25 and 200 mg ·l-1 N in the nutrient solution over a 12 month growing period. Free leaf arginine increased when N was supplied at 400 mg·l-1 N. The form of N affected the growth of rough lemon. High NH4-N:NO3-N (75:25) ratios decreased TDM when Sulfur (S) was absent from the nutrient solution, but not if S was present. Free arginine increased in leaves at high NH4-N (No S) ratios, but not at high NH4-N (S supplied) ratios. Free leaf arginine was correlated with free leaf ammonia. These results have important implications for reducing the concentration of N in nutrient solutions used in citrus nurseries and may indicate that higher NH4-N ratios can be used when adequate S is also supplied.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 523b-523 ◽  
Author(s):  
Erin James ◽  
Marc van Iersel

The quantity and quality of available water in the Southeastern United States continues to decline as demands on limited resources increase. Growers will soon be forced to comply with legal limitations on water consumption and limits on nutrient runoff from their operations. A lack of information on standard growing practices using alternative irrigation systems such as ebb and flow is hindering their acceptance and implementation. We are currently conducting a series of experiments to establish basic growing guidelines for the use of ebb and flow in the greenhouse in bedding plant production. In the third of these experiments, Petunia × hybrida Hort. Vilm.-Andr. `Blue Frost' and Begonia × hiemalis Fotsch. `Ambassador Scarlet' were grown for 5 weeks on ebb and flow tables with fertigation solutions (225 ppm N) containing three different levels of phosphorus (0, 50, and 100 ppm). Three soilless media were also used, which varied in their percentage content of vermiculite, perlite, pine bark and coconut coir. For both the begonias and petunias dry mass of the shoot was greatest in plants grown with higher levels of phosphorus. In comparison to plants grown with 0 ppm phosphorous, petunias and begonias grown with 50 or 100 ppm P were 44% and 25% greater in mass, respectively. However, begonias had 38% more flowers when fertigated with the higher levels of phosphorous while petunias flowered earlier with 0 ppm P fertigation solution. The electrical conductivity of the media did not change significantly over the course of the growing period, but the pH dropped by an average of 1 over the same time interval.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 889
Author(s):  
Aviad Perry ◽  
Noemi Tel-Zur ◽  
Arnon Dag

Jojoba (Simmondsia chinensis) is a wax crop cultivated mainly in arid and semi-arid regions. This crop has been described as an alternate-bearing plant, meaning that it has a high-yield year (“on-year”) followed by a low-yield year (“off-year”). We investigated the effect of fruit load on jojoba’s vegetative and reproductive development. For two consecutive years, we experimented with two high-yielding cultivars—Benzioni and Hazerim—which had opposite fruit loads, i.e., one was under an on-year load, while the other was under an off-year load simultaneously. We found that removing the developing fruit from the shoot during an off-year promotes further vegetative growth in the same year, whereas in an on-year, this action has no effect. Moreover, after fruit removal in an on-year, there was a delay in vegetative growth renewal in the consecutive year, suggesting that the beginning of the growing period is dependent on the previous year’s yield load. We found that seed development in the 2018 season started a month earlier than in the 2017 season in both cultivars, regardless of fruit load. This early development was associated with higher wax content in the seeds. Hence, the wax accumulation rate, as a percentage of dry weight, was affected by year and not by fruit load. However, on-year seeds stopped growing earlier than off-year seeds, resulting in smaller seeds and an overall lower amount of wax per seed.


Sign in / Sign up

Export Citation Format

Share Document