scholarly journals Effect of population densities of Heterodera glycines race 3 on leaf area, photosynthesis and yield of soybean

2002 ◽  
Vol 27 (3) ◽  
pp. 273-278 ◽  
Author(s):  
GUILHERME L. ASMUS ◽  
LUIZ CARLOS C. B. FERRAZ

The effect of Heterodera glycines on photosynthesis, leaf area and yield of soybean (Glycine max) was studied in two experiments carried out under greenhouse condition. Soybean seeds were sown in 1.5 l (Experiment 1) or 5.0 l (Experiment 2) clay pots filled with a mixture of field soil + sand (1:1) sterilized with methyl bromide. Eight days after sowing, seedlings were thinned to one per pot, and one day later inoculated with 0; 1.200; 3.600; 10.800; 32.400 or 97.200 J2 juveniles of H. glycines. Experiment 1 was carried out during the first 45 days of the inoculation while Experiment 2 was conducted during the whole cycle of the crop. Measurements of photosynthetic rate, stomatic conductance, chlorophyll fluorescence, leaf color, leaf area, and chlorophyll leaf content were taken at ten-day intervals throughout the experiments. Data on fresh root weight, top dry weight, grain yield, number of eggs/gram of roots, and nematode reproduction factor were obtained at the end of the trials. Each treatment was replicated ten times. There was a marked reduction in both photosynthetic rate and chlorophyll content, as well as an evident yellowing of the leaves of the infected plants. Even at the lowest Pi, the effects of H. glycines on the top dry weight or grain yield were quite severe. Despite the parasitism, soybean yield was highly correlated with the integrated leaf area and, accordingly, the use of this parameter was suggested for the design of potential damage prediction models that include physiological aspects of nematode-diseased plants.

1991 ◽  
Vol 9 (3) ◽  
pp. 163-167
Author(s):  
Stuart L. Warren ◽  
Frank A. Blazich ◽  
Mack Thetford

Abstract Uniconazole was applied as a foliar spray or medium drench to six woody landscape species: ‘Sunglow’ azalea; flame azalea; ‘Spectabilis’ forsythia; ‘Compacta’ holly; ‘Nellie R. Stevens’ holly; and mountain pieris. One hundred days after uniconazole application, leaf, stem, and top dry weight of all species, except flame azalea and mountain pieris, decreased as uniconazole concentration increased. Compared to controls, stem and leaf dry weight were reduced by uniconazole 18 to 60% and 13 to 32%, respectively, depending on species and method of application. Stem dry weight was reduced to a greater degree, compared to leaf dry weight. For all species, drench application was more effective than foliar spray in reducing leaf, stem, and top dry weight. Leaf area of ‘Spectabilis’ forsythia and ‘Nellie R. Stevens’ holly decreased with increasing rates. However, specific leaf weight was not affected. Uniconazole did not significantly affect leaf net photosynthetic rate, stomatal conductance or internal leaf CO2 concentrations in ‘Spectabilis’ forsythia or ‘Nellie R. Stevens’ holly. No phytotoxicity was observed on any species.


1975 ◽  
Vol 26 (3) ◽  
pp. 497 ◽  
Author(s):  
EAN Greenwood ◽  
P Farrington ◽  
JD Beresford

The time course of development of a lupin crop was studied at Bakers Hill, Western Australia. The aim was to gain insight into the crop factors influencing yield. Weekly measurements were made of numbers and weights of plant parts, and profiles of roots, leaf area and light interception. A profile of carbon dioxide in the crop atmosphere was taken at the time of maximum leaf area, and the net carbon dioxide exchange (NCE) of pods was estimated for three successive weeks. The crop took 10 weeks to attain a leaf area index (LAI) of 1 and a further 9 weeks to reach a maximum LAI of 3.75, at which time only 33% of daylight reached the pods on the main axis. Once the maximum LAI was attained at week 19, leaf fall accelerated and rapid grain filling commenced almost simultaneously on all of the three orders of axes which had formed pods. Measurements of NCE between pods on the main axis and the air suggest that the assimilation of external carbon dioxide by the pods contributed little to grain filling. Grain dry weight was 2100 kg ha-1 of which 30%, 60% and 10% came from the main axis, first and second order apical axes respectively. Only 23% of the flowers set pods and this constitutes an important physiological limitation to grain yield.


1978 ◽  
Vol 91 (1) ◽  
pp. 31-45 ◽  
Author(s):  
I. Pearman ◽  
S. M. Thomas ◽  
G. N. Thorne

SummaryEight amounts of nitrogen ranging from 0 to 210 kg N/ha were applied to two tall and one semi-dwarf variety of winter wheat in the spring of 1975 and 1976. The tall varieties were Cappelle-Desprez and Maris Huntsman; the semi-dwarf variety was Maris Fundin in 1975 and Hobbit in 1976. Interactions between varieties and nitrogen were few and small compared with the main effects. All varieties produced their maximum grain yields with 180 kg N/ha. The yield of the semi-dwarf varieties, but not the others, decreased slightly with more nitrogen.Cappelle-Desprez yielded less grain than the other varieties in both years. In 1975 the yields of Maris Fundin and Maris Huntsman were similar and in 1976 Hobbit yielded more than Maris Huntsman. The varieties had similar numbers of ears at maturity and similar patterns of tillering. The semi-dwarf varieties had most grains per spikelet, and hence grains per ear, and Cappelle-Desprez had least. The semi-dwarf varieties had the smallest grains. The semi-dwarf varieties had less straw than the other varieties and hence the largest ratios of grain to total above-ground dry weight. The decrease in dry weight of stem and leaves between anthesis and maturity was similar for all varieties. In 1975 the efficiency of the top two leaves plus top internode in producing grain was the same for all varieties, but in 1976 Hobbit was more efficient than the other two. There were some small differences between varieties in nutrient uptake that were not related to differences in growth. Maris Fundin tended to have a greater phosphorus and potassium content than the tall varieties. Hobbit contained slightly less nitrogen than the tall varieties at maturity, and had a smaller concentration of nitrogen in the grain.Applying 210 kg N/ha doubled grain yield in 1975. Applying nitrogen resulted in a largeincrease in number of ears and a small increase in number of grains per ear due to the development of more fertile spikelets per ear. Nitrogen decreased dry weight per grain, especially of the semi-dwarf varieties. With extra nitrogen, straw dry weight at maturity, shoot dry weight atanthesis and leaf area were all increased relatively more than grain yield, and stems lost moredry weight between anthesis and maturity than without nitrogen. The year 1976 was exceptionallydry and nitrogen had only small effects in that it affected neither straw dry weight nor numberof ears but slightly increased grain yield by increasing the number of spikelets and number of grains per spikelet. It also increased leaf area proportionately to grain yield. In 1975 nitrogen increased evaporation of water from the crop before anthesis but decreased it after anthesis, even though it continued to increase the extraction of water from below 90 cm.


Plant Disease ◽  
2006 ◽  
Vol 90 (5) ◽  
pp. 597-602 ◽  
Author(s):  
M. T. Kirkpatrick ◽  
C. S. Rothrock ◽  
J. C. Rupe ◽  
E. E. Gbur

The effect of flooding and Pythium ultimum on soybean, Glycine max, was determined in a series of greenhouse experiments using the cultivars Hutcheson and Archer. Seeds were planted into pasteurized soil either not infested or infested with sand-cornmeal inoculum of P. ultimum and either flooded at emergence for 2 days or at the four leaf node stage (V4) for 5 days. A nonflooded control was included in each experiment. Seeds placed directly into infested soil resulted in little or no stand for Hutcheson regardless of flood treatment, whereas stand was reduced for Archer only in the flooded infested soil treatment. Additional experiments were conducted by placing seed onto a 2- to 5-mm layer of pathogen-free soil on top of the infested soil. Flooding at emergence reduced plant height, growth stage, and top dry weight for Hutcheson and root fresh weight for both cultivars. Greater reductions for Hutcheson in root weight, and top dry weight in P. ultimum-infested soil in the soil layer experiments, also indicated that Hutcheson was more susceptible than Archer. Flooding alone decreased root weights, and infestation with P. ultimum reduced weights further resulting in an additive effect. This also was the case for plant height, growth stage, and top dry weight for Hutcheson for flooding at emergence. Root discoloration was greatly increased for both cultivars in infested soil flooded at emergence. Similar results were found when plants were flooded at V4; however, the effect was not as great as with flooding at emergence. These studies indicate that Pythium damping-off and root rot may account for a portion of the negative response of soybean to flooding. The results also indicate that Archer has some resistance to P. ultimum.


HortScience ◽  
1994 ◽  
Vol 29 (11) ◽  
pp. 1298-1302 ◽  
Author(s):  
D. Bradley Rowe ◽  
Stuart L. Warren ◽  
Frank A. Blazich

Catawba rhododendron (Rhododendron catawbiense Michx.) seedlings of two provenances, Johnston County, N.C. (35°45′N, 78°12′W, elevation = 67 m), and Yancey County, N.C. (35°45′N, 82°16′W, elevation = 1954 m), were grown in controlled-environment chambers for 18 weeks with days at 18, 22, 26, or 30C in factorial combination with nights at 14, 18, 22, or 26C. Shoot and root dry weights and total leaf areas of seedlings of the Yancey County provenance (high elevation) exceeded (P ≤ 0.05) those of the Johnston County (low elevation) provenance at all temperature combinations. Leaf area was maximal at 22/22C, 18/26C, and 22/26C and minimal at 30/14C (day/night). Shoot dry weight responded similarly. Root dry weight decreased linearly with increasing day temperature, but showed a quadratic response to night temperature. Leaf weight ratio (leaf dry weight: total plant dry weight) increased, while root weight ratio (root dry weight: total plant dry weight) decreased with increasing day temperature. Leaf weight ratio was consistently higher than either stem or root weight ratios. Day/night cycles of 22 to 26/22C appear optimal for seedling growth.


2017 ◽  
Vol 6 (2) ◽  
pp. 1531 ◽  
Author(s):  
Prajjwal Dubey ◽  
Raghubanshi A. S. ◽  
Anil K. Dwivedi*

A range of leaf attributes was measured for 17 herbaceous species in four contrasting habitats fortnightly from July to September during 2996-2007. All herbaceous vegetation in 5 randomly located plots within each of four sites were clipped at ground level and analyzed fortnightly. Leaf area was recorded by the leaf area meter (Systronics; Leaf area meter- 211). Fresh leaves were dried at 80o C for 48 hr to estimate their dry weight. Specific Leaf Area (SLA) was determined as ratio of leaf area to leaf dry weight. Leaf nitrogen was measured by Kjeldahl method and phosphorus by phosphomolybdic blue colorimetric method. The obtained values were subjected to Two- tailed Pearson correlation coefficients using SPSS (2004 ver. 13) package. SLA, leaf nitrogen, leaf phosphorus and photosynthetic rate show positive relationship with each other.


1970 ◽  
Vol 5 (1) ◽  
Author(s):  
Lia Karlina Br Sembiring ◽  
Rosita Sipayung ◽  
Irsal

Massive breeding is often the case with the availability of the amount of water that can be stored on the media. The aim of this research is to know the influence of media and the frequency of watering on the growth of robusta coffee seedlings and to find the best media and optimum watering frequency. This experiment was conducted at the Faculty of Agriculture, University of Sumatera Utara, Medan from June to September 2017. The experimental method used was Factorial Randomized Block Design with 2 treatment factors, ie 1: planting medium ie, topsoil ; topsoil: sand (2: 1); topsoil: rice husk (2: 1), topsoil: charcoal husk (2: 1) and factor 2: watering frequency ie, watered once a day; watered every 4 days; watered 7 days and watered once every 10 days. The variable was plant height, stem diameter, total leaf number, total leaf area, fresh crown weight, canopy dry weight, fresh root weight, root dry weight, longest root, and canopy and root ratio. The results showed that planting media treatment had a significant effect on plant height variables, stem diameter increase, leaf number, total leaf area, fresh crown weight, canopy dry weight, fresh root weight, root dry weight, and root canopy ratio. The best treatment of planting medium was found in topsoil treatment: rice husk (2: 1). The treatment of watering frequency had a significant effect on the stem diameter 2 - 12 of the week after planting move observation variable, total leaf area, fresh crown weight, dry crown weight, fresh root weight, and dry weight of roots. The best treatment frequency of watering hose is watering every 4 days. The interaction between the two treatments had a significant effect on the diameter of the stem diameter variable, the total leaf area and the fresh weight of the canopy.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 471b-471
Author(s):  
Jim E. Wyatt

The objectives of this study were to investigate the effects of trifluralin (TRI) herbicide on plant vigor and lateral root growth of snap beans. Lexington silt loam soil, which had not been treated with herbicides for at least 3 years, was used in this study. TRI herbicide was mixed with appropriate amounts of soil in a cement mixer to provide a constant rate of 560 g ai/ha TRI. To simulate TRI herbicide incorporation, bands of treated and untreated soil were layered into 30 × 30 × 15 cm (vol 13,500 cm3) bottomless wood boxes. Treatments were 1) control, 2) 2.5-cm treated band placed 2.5 cm below soil surface (BSS), 3) 2.5 cm treated band placed 5.1 cm BSS, 4) top 5.1 cm with treated soil, or 5) top 7.6 cm with treated soil. `Benton' snap beans were planted in each box and grown in the greenhouse for 25 days. Plant measurements made included plant height, leaf area, and fresh and dry weight. The root system of each plant was washed and roots arising from the hypocotyl, transition zone, and primary roots were counted. All roots from each box were combined, dried overnight at 100C and weighed. Plant top weight and leaf area were not affected by TRI treatments. Plants were shorter in all TRI treatments except where placement was banded at 5.1 cm BSS. More adventitious roots were produced on hypocotyls when TRI was applied in a 2.5-cm band at 2.5-cm BSS or in the top 5.1 cm of soil. Total root weight was lower and fewer lateral roots developed in all soil bands treated with TRI.


1971 ◽  
Vol 22 (1) ◽  
pp. 1 ◽  
Author(s):  
DW Puckridge

Photosynthesis of two wheat cultivars grown in the field was examined during three seasons by use of a portable field assimilation chamber. There were large differences in dry weight, leaf area, and carbon dioxide uptake between seasons. Variations in carbon dioxide uptake by the community were related mainly to changes in leaf area index (LAI). There were changes in carbon dioxide uptake per unit LAI with time, and between the two cultivars in the first season, but the effects of these changes were small compared with the effects of LAI. Differences in grain yield were correlated with LAI and carbon dioxide uptake in the period after anthesis.


1967 ◽  
Vol 47 (4) ◽  
pp. 359-365 ◽  
Author(s):  
H. D. Voldeng ◽  
G. M. Simpson

Shading treatments with a high- and a low-yielding line of wheat indicated that the ear and flag leaf contributed the major portion of grain dry weight. Correlation coefficients calculated between flag-leaf area and grain yield, and ear area and grain yield, from tillers within seven lines of wheat ranged from + 0.54 to + 0.90. The combination of a large flag leaf plus a large ear area showed promise as an index for selecting higher yielding individuals from a mixture of genotypes.


Sign in / Sign up

Export Citation Format

Share Document