THE RELATIONSHIP BETWEEN PHOTOSYNTHETIC AREA AND GRAIN YIELD PER PLANT IN WHEAT

1967 ◽  
Vol 47 (4) ◽  
pp. 359-365 ◽  
Author(s):  
H. D. Voldeng ◽  
G. M. Simpson

Shading treatments with a high- and a low-yielding line of wheat indicated that the ear and flag leaf contributed the major portion of grain dry weight. Correlation coefficients calculated between flag-leaf area and grain yield, and ear area and grain yield, from tillers within seven lines of wheat ranged from + 0.54 to + 0.90. The combination of a large flag leaf plus a large ear area showed promise as an index for selecting higher yielding individuals from a mixture of genotypes.

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Armin Saed-Moucheshi ◽  
Mohammad Pessarakli ◽  
Bahram Heidari

Multivariate statistical techniques were used to compare the relationship between yield and its related traits under noninoculated and inoculated cultivars with mycorrhizal fungus (Glomus intraradices); each one consisted of three wheat cultivars and four water regimes. Results showed that, under inoculation conditions, spike weight per plant and total chlorophyll content of the flag leaf were the most important variables contributing to wheat grain yield variation, while, under noninoculated condition, in addition to two mentioned traits, grain weight per spike and leaf area were also important variables accounting for wheat grain yield variation. Therefore, spike weight per plant and chlorophyll content of flag leaf can be used as selection criteria in breeding programs for both inoculated and noninoculated wheat cultivars under different water regimes, and also grain weight per spike and leaf area can be considered for noninoculated condition. Furthermore, inoculation of wheat cultivars showed higher value in the most measured traits, and the results indicated that inoculation treatment could change the relationship among morphological traits of wheat cultivars under drought stress. Also, it seems that the results of stepwise regression as a selecting method together with principal component and factor analysis are stronger methods to be applied in breeding programs for screening important traits.


Euphytica ◽  
1977 ◽  
Vol 26 (3) ◽  
pp. 739-744 ◽  
Author(s):  
F. H. Mcneal ◽  
M. A. Berg

1999 ◽  
Vol 132 (1) ◽  
pp. 23-30 ◽  
Author(s):  
J. IQBAL ◽  
D. WRIGHT

Three pot experiments were performed at the University of Wales, Bangor, Gwynedd, UK during 1993 to determine if differences in the competitive ability of three annual weeds (Chenopodium album L., Sinapis arvensis L. and Phalaris minor Retz.) were related to their relative effects on leaf growth, gas exchange and nitrogen uptake of spring wheat (cv. Alexandria). In all experiments, wheat density (316 plants m−2) was similar to that in a commercial crop and five weed density treatments (between 0 and 600 plants m−2) were tested. Measurements of gas exchange were made on fully expanded, attached wheat flag leaves on four occasions between emergence and complete senescence in the control and highest weed density treatments. High weed density resulted in a lowering of net photosynthetic rate due to stomatal and non-stomatal factors. Lamina area and stomatal density of wheat flag leaves were decreased, and specific leaf area was increased by weed competition, but the effects on these variables were smaller than on net photosynthesis. Weed density did not affect wheat plant height, but dry weight, grain yield and total N-uptake were decreased with an increase in density of all weed species. The rank order of competitive ability of the species (C. album>P. minor>S. arvensis) was unaffected by weed density and was the same irrespective of whether it was based on the % decreases in wheat grain yield or in total plant dry weight. Averaged over the four measurements made during the grain-filling period there were only small differences between the weed species in their effects on net photosynthetic rate. However, when these were combined with effects on flag leaf area, there were larger differences in calculated net photosynthetic productivity, which were related to differences in the effects of weeds on grain yield. Differences in the competitive ability of weeds were not related to differences in their effects on wheat flag leaf lamina area, specific leaf area, stomatal density or total nitrogen uptake. Differences in competitive ability between weed species were not related to differences in weed plant height, dry weight or nitrogen uptake. It was concluded that the observed effects of weeds on wheat were due either to shading, or to competition for a nutrient other than nitrogen.


Author(s):  
А. I. Grabovets ◽  
V. P. Kadushkina ◽  
S. А. Kovalenko

With the growing aridity of the climate on the Don, it became necessary to improve the methodology for conducting the  breeding of spring durum wheat. The main method of obtaining the source material remains intraspecific step hybridization. Crossings were performed between genetically distant forms, differing in origin and required traits and properties. The use of chemical mutagenesis was a productive way to change the heredity of genotypes in terms of drought tolerance. When breeding for productivity, both in dry years of research and in favorable years, the most objective markers were identified — the size of the aerial mass, the mass of grain per plant, spike, and harvest index. The magnitude of the correlation coefficients between the yield per unit area and the elements of its structure is established. It was most closely associated with them in dry years, while in wet years it decreased. Power the correlation of the characteristics of the pair - the grain yield per square meter - the aboveground biomass averaged r = 0.73, and in dry years it was higher (0.91) than in favorable ones (0.61 - 0.70) , between the harvest and the harvest index - r = 0.81 (on average). In dry years, the correlation coefficient increased to 0.92. Research data confirms the greatest importance of the mass of grain from one ear and the plant in the formation of grain yield per unit area in both dry and wet years. In dry years, the correlation coefficient between yield and grain mass per plant was on average r = 0.80; in favorable years, r = 0.69. The relationship between yield and grain mass from the ear was greater — r = 0.84 and r = 0.82, respectively. Consequently, the breeding significance of the aboveground mass and the productivity of the ear, as a criterion for the selection of the crop, especially increases in the dry years. They were basic in the selection.


1975 ◽  
Vol 26 (3) ◽  
pp. 497 ◽  
Author(s):  
EAN Greenwood ◽  
P Farrington ◽  
JD Beresford

The time course of development of a lupin crop was studied at Bakers Hill, Western Australia. The aim was to gain insight into the crop factors influencing yield. Weekly measurements were made of numbers and weights of plant parts, and profiles of roots, leaf area and light interception. A profile of carbon dioxide in the crop atmosphere was taken at the time of maximum leaf area, and the net carbon dioxide exchange (NCE) of pods was estimated for three successive weeks. The crop took 10 weeks to attain a leaf area index (LAI) of 1 and a further 9 weeks to reach a maximum LAI of 3.75, at which time only 33% of daylight reached the pods on the main axis. Once the maximum LAI was attained at week 19, leaf fall accelerated and rapid grain filling commenced almost simultaneously on all of the three orders of axes which had formed pods. Measurements of NCE between pods on the main axis and the air suggest that the assimilation of external carbon dioxide by the pods contributed little to grain filling. Grain dry weight was 2100 kg ha-1 of which 30%, 60% and 10% came from the main axis, first and second order apical axes respectively. Only 23% of the flowers set pods and this constitutes an important physiological limitation to grain yield.


1978 ◽  
Vol 91 (1) ◽  
pp. 31-45 ◽  
Author(s):  
I. Pearman ◽  
S. M. Thomas ◽  
G. N. Thorne

SummaryEight amounts of nitrogen ranging from 0 to 210 kg N/ha were applied to two tall and one semi-dwarf variety of winter wheat in the spring of 1975 and 1976. The tall varieties were Cappelle-Desprez and Maris Huntsman; the semi-dwarf variety was Maris Fundin in 1975 and Hobbit in 1976. Interactions between varieties and nitrogen were few and small compared with the main effects. All varieties produced their maximum grain yields with 180 kg N/ha. The yield of the semi-dwarf varieties, but not the others, decreased slightly with more nitrogen.Cappelle-Desprez yielded less grain than the other varieties in both years. In 1975 the yields of Maris Fundin and Maris Huntsman were similar and in 1976 Hobbit yielded more than Maris Huntsman. The varieties had similar numbers of ears at maturity and similar patterns of tillering. The semi-dwarf varieties had most grains per spikelet, and hence grains per ear, and Cappelle-Desprez had least. The semi-dwarf varieties had the smallest grains. The semi-dwarf varieties had less straw than the other varieties and hence the largest ratios of grain to total above-ground dry weight. The decrease in dry weight of stem and leaves between anthesis and maturity was similar for all varieties. In 1975 the efficiency of the top two leaves plus top internode in producing grain was the same for all varieties, but in 1976 Hobbit was more efficient than the other two. There were some small differences between varieties in nutrient uptake that were not related to differences in growth. Maris Fundin tended to have a greater phosphorus and potassium content than the tall varieties. Hobbit contained slightly less nitrogen than the tall varieties at maturity, and had a smaller concentration of nitrogen in the grain.Applying 210 kg N/ha doubled grain yield in 1975. Applying nitrogen resulted in a largeincrease in number of ears and a small increase in number of grains per ear due to the development of more fertile spikelets per ear. Nitrogen decreased dry weight per grain, especially of the semi-dwarf varieties. With extra nitrogen, straw dry weight at maturity, shoot dry weight atanthesis and leaf area were all increased relatively more than grain yield, and stems lost moredry weight between anthesis and maturity than without nitrogen. The year 1976 was exceptionallydry and nitrogen had only small effects in that it affected neither straw dry weight nor numberof ears but slightly increased grain yield by increasing the number of spikelets and number of grains per spikelet. It also increased leaf area proportionately to grain yield. In 1975 nitrogen increased evaporation of water from the crop before anthesis but decreased it after anthesis, even though it continued to increase the extraction of water from below 90 cm.


1979 ◽  
Vol 59 (3) ◽  
pp. 585-601 ◽  
Author(s):  
G. O. EDMEADES ◽  
T. B. DAYNARD

In an attempt to explain plant-to-plant variation in dry weight of maize (Zea mays L.), a computer program was developed to predict daily assimilation per plant and its distribution throughout the shoot at flowering. Inputs to the model were meteorological data, photosynthetic rate-irradiance curves, measurements of intraplant assimilate distribution at flowering, and the positions of individual leaves of plants grown in the field at three densities (50 000, 100 000 and 150 000 plants/ha). Dry weights were recorded on these same plants following black layer formation. Predicted effects of plant density on shoot growth compared favorably with available data. The correlation coefficient between predicted assimilation 1 day after anthesis and grain yield on the same plants, with treatment effects removed, was 0.67 (N = 360). The coefficient of variation of predicted assimilate flux per plant increased significantly with increasing density, and the fluxes were generally normally distributed. Results supported the concept of a threshold assimilation rate per plant below which grain would not normally form, and this appears to be the cause of the bimodal frequency distribution of grain yield per plant observed at high densities.


Author(s):  
Ionuṭ RACZ ◽  
Rozalia KADAR ◽  
Sorin VȂTCĂ ◽  
Ioana Virginia BERINDEAN ◽  
Adrian CECLAN ◽  
...  

The objective of this study was to investigate relationships between leaf area index, leaf chlorophyll concentration, yield components and grain yield in oat (Avena sativa L.). Ten oat varieties were analyzed in field conditions regarding those traits. Flag leaf chlorophyll concentration range between 451.51 and 747.79 units of μmol of chlorophyll per m2. Also, leaf area index range between 13.68 to 32.84 cm2. Significant correlation indices were highlighted between yield components and leaf area index, yield/yield components and chlorophyll concentration of flag leaf.


2008 ◽  
Vol 146 (3) ◽  
pp. 287-300 ◽  
Author(s):  
P. MONNEVEUX ◽  
C. SANCHEZ ◽  
A. TIESSEN

SUMMARYThe use of secondary traits such as number of ears per plant, grains per ear, the interval from anthesis to silking, leaf senescence and leaf rolling, together with management of water stress and recurrent selection, have permitted a considerable increase in drought tolerance in the CIMMYT maize source germplasm populations Drought Tolerant Population (DTP) and La Posta Sequía (LPS). Inbred lines were extracted from DTP C9 and LPS C7 cycles and then used for generating single and three-ways hybrids. These were evaluated under normal irrigation and managed drought conditions. A weak, and in some cases no longer significant, correlation was found between grain yield and the traits initially used for selection. Most prominently, the relationship between anthesis-silking interval and grain yield became much weaker in these hybrids. Conversely, significant negative correlations were found between tassel dry weight and grain yield. Three-way hybrids involving two DTP lines yielded more than those involving one only, indicating the feasibility of gene pyramiding for drought tolerance. Overall, the results suggested that the relationship between grain yield and secondary traits has been modified due to continuous selection in the LPS and DTP populations. Some long-established secondary traits have become less important, while others have become more relevant. Mean grain weight, previously not used within a drought selection index, was strongly correlated with yield in the present study. The importance of traits related to the availability in C products for the development of ears and grains are discussed. The results indicate that the traits of source organs contribute marginally to drought tolerance; variation of leaf or root traits seems to be less important than variation in tassel parameters for increasing drought tolerance. For ensuring further progress in drought tolerance in maize, the solution might reside in the manipulation of sink organs. It is therefore suggested that selection for even greater number of ears, bigger grains and smaller tassels may help to increase grain yield under water limited environments in the near future. A short discussion on the optimal choice of parental lines for developing hybrids with maximum expression of drought tolerance concludes the paper.


2018 ◽  
Vol 69 (6) ◽  
pp. 594 ◽  
Author(s):  
Goudarz Ahmadvand ◽  
Somayeh Hajinia

Piriformospora indica is one of the cultivable root-colonising endophytic fungi of the order Sebacinales, which efficiently promote plant growth, uptake of nutrients, and resistance to biotic and abiotic stresses. The aim of this study was to evaluate the effect of P. indica on millet (Panicum miliaceum L.) under water-stress conditions. Two field experiments were carried out in a factorial arrangement at Bu-Ali Sina University of Hamedan, Iran, during 2014 and 2015. The first factor was three levels of water-deficit stress, with irrigation after 60 mm (well-watered), 90 mm (mild stress) and 120 mm (severe stress) evaporation from pan class A. The second factor was two levels of fungus P. indica: inoculated and uninoculated. Results showed that water-deficit stress significantly decreased grain yield and yield components. Colonisation by P. indica significantly increased number of panicles per plant, number of grains per panicle and 1000-grain weight, regardless of water supply. Inoculation with P. indica increased grain yield by 11.4% (year 1) and 19.72% (year 2) in well-watered conditions and by 35.34% (year 1) and 32.59% (year 2) under drought stress, compared with uninoculated plants. Maximum flag-leaf area (21.71 cm2) was achieved with well-watered conditions. Severe water stress decreased flag-leaf area by 53.36%. Flag-leaf area was increased by 18.64% by fungus inoculation compared with the uninoculated control. Under drought conditions, inoculation with P. indica increased plant height by 27.07% and panicle length by 9.61%. Severe water stress caused a significant decrease in grain phosphorus concentration, by 42.42%, compared with the well-watered treatment. By contrast, grain nitrogen and protein contents were increased about 30.23% and 30.18%, respectively, with severe water stress. Inoculation with P. indica increased grain phosphorus by 24.22%, nitrogen by 7.47% and protein content by 7.54% compared with control. Water stress reduced leaf chlorophyll and carotenoid concentrations, whereas P. indica inoculation enhanced chlorophyll concentrations by 27.18% under severe water stress. The results indicated the positive effect of P. indica on yield and physiological traits of millet in both well-watered and water-stressed conditions.


Sign in / Sign up

Export Citation Format

Share Document