scholarly journals IDENTIFICATION AND VALIDATION OF REFERENCE GENES FOR THE NORMALIZATION IN REAL-TIME RT-QPCR ON RICE AND RED RICE IN COMPETITION, UNDER DIFFERENT NITROGEN DOSES

2017 ◽  
Vol 35 (0) ◽  
Author(s):  
D.P. BENEMANN ◽  
A.M. NOHATO ◽  
L. VARGAS ◽  
L.A AVILA ◽  
D. AGOSTINETTO

ABSTRACT Real time reverse transcription polymerase chain reaction (RT-qPCR) is an important technique to analyze differences in gene expression due to its sensitivity, accuracy, and specificity. However, before analyzing the expression of the target gene, it is necessary to identify and evaluate the stability of candidate reference genes for the proper normalization. This study aimed at evaluating the stability of candidate reference genes in order to identify the most appropriate genes for the normalization of the transcription in rice and red rice in competition under different nitrogen levels, as well as to demonstrate the effectiveness of the reference gene selected for the expression of the cytosolic ascorbate peroxidase (OsAPX2). Eleven candidate reference genes were assessed using the RefFinder which integrates the four leading software: geNorm, NormFinder, Bestkeeper, and the comparative delta-Ct method in addition to the analysis of variance to identify genes with lower standard deviation and coefficient of variation values. Eight out of the eleven genes have shown the desired effectiveness and, among them, the gene UBC-E2 has the highest stability according to RefFinder and the analysis of variance. The expression of the gene OsAPX2 has proven to be effective in validating the candidate reference gene. This study is the first survey on the stability of candidate reference genes in rice and red rice in competition, providing information to obtain more accurate results in RT-qPCR.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Xiong ◽  
Xiangyun Cheng ◽  
Chao Zhang ◽  
Roland Manfred Klar ◽  
Tao He

Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) remains one of the best-established techniques to assess gene expression patterns. However, appropriate reference gene(s) selection remains a critical and challenging subject in which inappropriate reference gene selction can distort results leading to false interpretations. To date, mixed opinions still exist in how to choose the most optimal reference gene sets in accodrance to the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guideline. Therefore, the purpose of this study was to investigate which schemes were the most feasible for the identification of reference genes in a bone and cartilage bioengineering experimental setting. In this study, rat bone mesenchymal stem cells (rBMSCs), skeletal muscle tissue and adipose tissue were utilized, undergoing either chondrogenic or osteogenic induction, to investigate the optimal reference gene set identification scheme that would subsequently ensure stable and accurate interpretation of gene expression in bone and cartilage bioengineering. Results The stability and pairwise variance of eight candidate reference genes were analyzed using geNorm. The V0.15- vs. Vmin-based normalization scheme in rBMSCs had no significant effect on the eventual normalization of target genes. In terms of the muscle tissue, the results of the correlation of NF values between the V0.15 and Vmin schemes and the variance of target genes expression levels generated by these two schemes showed that different schemes do indeed have a significant effect on the eventual normalization of target genes. Three selection schemes were adopted in terms of the adipose tissue, including the three optimal reference genes (Opt3), V0.20 and Vmin schemes, and the analysis of NF values with eventual normalization of target genes showed that the different selection schemes also have a significant effect on the eventual normalization of target genes. Conclusions Based on these results, the proposed cut-off value of Vn/n + 1 under 0.15, according to the geNorm algorithm, should be considered with caution. For cell only experiments, at least rBMSCs, a Vn/n + 1 under 0.15 is sufficient in RT-qPCR studies. However, when using certain tissue types such as skeletal muscle and adipose tissue the minimum Vn/n + 1 should be used instead as this provides a far superior mode of generating accurate gene expression results. We thus recommended that when the stability and variation of a candidate reference genes in a specific study is unclear the minimum Vn/n + 1 should always be used as this ensures the best and most accurate gene expression value is achieved during RT-qPCR assays.


2018 ◽  
Vol 19 (8) ◽  
pp. 2258 ◽  
Author(s):  
Yuning Hu ◽  
Hongtuo Fu ◽  
Hui Qiao ◽  
Shengming Sun ◽  
Wenyi Zhang ◽  
...  

Quantitative real-time PCR (qPCR) is widely used in molecular biology, although the accuracy of the quantitative results is determined by the stability of the reference genes used. Recent studies have investigated suitable reference genes for some crustaceans under various conditions, but studies in Macrobrachium nipponense are currently lacking. In this study, we selected the following seven genes from among 35 commonly used housekeeping genes as candidate qPCR reference genes for temporal and spatial expression: EIF (eukaryotic translation initiation factor 5A), 18S (18S ribosomal RNA), EF-1α (elongation factor-1α), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), TUB (α-tubulin), β-act (β-actin), and RPL18 (Ribosomal protein L18). The stability of each reference gene was evaluated by GeNorm, NormFinder, BestKeeper, and comparative ∆C t methods, and was comprehensively ranked using RefFinder. RPL18 was shown to be the most suitable reference gene for adult M. nipponense tissues, while EIF was the most stable in different ovarian and embryo stages and in white spot syndrome virus infection, and β-act was the most stable reference gene under hypoxia stress. The reliability of the rankings was confirmed by RNA interference experiments. To the best of our knowledge, this represents the first systematic analysis of reference genes for qPCR experiments in M. nipponense, and the results will provide invaluable information for future research in closely related crustaceans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhongxu Zhu ◽  
Keqin Gregg ◽  
Wenli Zhou

BackgroundAppropriate reference genes are critical to accurately quantifying relative gene expression in research and clinical applications. Numerous efforts have been made to select the most stable reference gene(s), but a consensus has yet to be achieved. In this report, we propose an in silico reference gene validation method, iRGvalid, that can be used as a universal tool to validate the reference genes recommended from different resources so as to identify the best ones without a need for any wet lab validation tests.MethodsiRGvalid takes advantage of high throughput gene expression data and is built on a double-normalization strategy. First, the expression level of each individual gene is normalized against the total gene expression level of each sample, followed by a target gene normalization to the candidate reference gene(s). Linear regression analysis is then performed between the pre- and post- normalized target gene across the whole sample set to evaluate the stability of the reference gene(s), which is positively associated with the Pearson correlation coefficient, Rt. The higher the Rt value, the more stable the reference gene. We applied iRGvalid to 14 candidate reference genes to validate and identify the most stable reference genes in four cancer types: lung adenocarcinoma, breast cancer, colon adenocarcinoma, and nasopharyngeal cancer. The stability of the reference gene is evaluated both individually and in groups of all possible combinations.ResultsHighly stable reference genes resulted in high Rt values regardless of the target gene used. The highest stability was achieved with a specific combination of 3 to 6 reference genes. A few genes were among the best reference genes across the cancer types studied here.ConclusioniRGvalid provides an easy and robust method to validate and identify the most stable reference gene or genes from a pool of candidate reference genes. The inclusivity of large expression data sets as well as the direct comparison of candidate reference genes makes it possible to identify reference genes with universal quality. This method can be used in any other gene expression studies when large cohorts of expression data are available.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Xiao Wang ◽  
Xue Kong ◽  
Shaoye Liu ◽  
Haiyi Huang ◽  
Zhenzhen Chen ◽  
...  

Abstract Chrysoperla nipponensis (Okamoto), which has the unique diapause phenotype distinguishable from nondiapause adult, is an ideal model organism for studying the mechanism of reproductive diapause. However, there is no reliable and effective reference genes used for the reproductive diapause study of C. nipponensis. Therefore, in this study, we evaluated the expression stability of 10 candidate reference genes (Tub1, Arpc5, EF1a, 128up, RpS5, RpS26e, GAPDH, Arp3, Actin, α-Tub) in adults under diapause and nondiapause induction conditions using four statistical algorithms including GeNorm, NormFinder, Bestkeeper, and ∆CT method. Results showed that Arp3 and Tub1 were the most stable reference genes in all samples and in the adult tissues group. Arp3 and RpS5 were the most stable reference genes in the development degree group. α-Tub and EF1a were unstable reference genes under the conditions of this study. Meanwhile, to verify the reliability of the reference genes, we evaluated the relative expression levels of Vg and VgR in different treatments. Significant upregulation and downregulation in expression level of two genes in response to diapause termination and diapause fat body tissue was, respectively, observed when using Arp3 as the reference gene but not when using an unstable reference gene. The reference genes identified in this work provided not only the basis for future functional genomics research in diapause of C. nipponensis and will also identify reliable normalization factors for real-time quantitative real-time polymerase chain reaction data for other related insects.


2011 ◽  
Vol 56 (No. 5) ◽  
pp. 213-216 ◽  
Author(s):  
M. Nesvadbová ◽  
A. Knoll

The selection of reference genes is essential for gene expression studies when using a real-time quantitative polymerase chain reaction (PCR). Reference gene selection should be performed for each experiment because the gene expression level may be changed in different experimental conditions. In this study, the stability of mRNA expression was determined for seven genes: HPRT1, RPS18, NACA, TBP, TAF4B, RPL32 and OAZ1. The stability of these reference genes was investigated in the skeletal muscle tissue of pig foetuses, piglets and adult pigs using real-time quantitative PCR and SYBR green chemistry. The expression of stability of the used reference genes was calculated using the geNorm application. Different gene expression profiles among the age categories of pigs were found out. RPS18 has been identified as the gene with the most stable expression in the muscle tissue of all pig age categories. HPRT1 and RPL32 were found to have the highest stability in piglets and adult pigs, and in foetuses and adults pigs, respectively. The newly used reference gene, TAF4B, reached the highest expression stability in piglets.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Elin Verbrugghe ◽  
Frank Pasmans ◽  
An Martel

AbstractReal-time quantitative PCR studies largely depend on reference genes for the normalization of gene expression. Stable reference genes should be accurately selected in order to obtain reliable results. We here present a study screening commonly used reference genes (TEF1F, α-centractin, Ctsyn1, GAPDH, R6046, APRT and TUB) in the chytrid fungi Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal), which cause the lethal amphibian skin disease chytridiomycosis. We evaluated the stability of the reference gene candidates during different growth stages of the fungi, using different statistical software packages: ΔCT, BestKeeper, GeNorm, NormFinder and RefFinder. In order to reflect the in vivo situation, the stability of the candidates was assessed when taking all growth stages into account. Using an ex-vivo approach, we tested whether the expression of GAPDH, TUB, R6046 and APRT (Bd) and GAPDH, TUB, R6046 and α-centractin (Bsal) remained stable when these fungi came in contact with host tissue. Finally, their role as in vivo reference genes was examined in skin tissue of experimentally infected midwife toads (Alytes obstetricans) (Bd) and fire salamanders (Salamandra salamandra) (Bsal). Summarized, the present study provides guidance for selecting appropriate reference genes when analyzing expression patterns of these fungal organisms during different growth stages and in Bd- or Bsal-infected tissues.


2006 ◽  
Vol 8 (4) ◽  
pp. 398-408 ◽  
Author(s):  
Sven Martin Jorgensen ◽  
Ellen Johanne Kleveland ◽  
Unni Grimholt ◽  
Tor Gjoen

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 960
Author(s):  
Meagan Archer ◽  
Jianping Xu

Aspergillus is a genus of filamentous fungi with vast geographic and ecological distributions. Species within this genus are clinically, agriculturally and biotechnologically relevant, leading to increasing interest in elucidating gene expression dynamics of key metabolic and physiological processes. Reverse-transcription quantitative Polymerase Chain Reaction (RT-qPCR) is a sensitive and specific method of quantifying gene expression. A crucial step for comparing RT-qPCR results between strains and experimental conditions is normalisation to experimentally validated reference gene(s). In this review, we provide a critical analysis of current reference gene selection and validation practices for RT-qPCR gene expression analyses of Aspergillus. Of 90 primary research articles obtained through our PubMed query, 17 experimentally validated the reference gene(s) used. Twenty reference genes were used across the 90 studies, with beta-tubulin being the most used reference gene, followed by actin, 18S rRNA and glyceraldehyde 3-phosphate dehydrogenase. Sixteen of the 90 studies used multiple reference genes for normalisation. Failing to experimentally validate the stability of reference genes can lead to conflicting results, as was the case for four studies. Overall, our review highlights the need to experimentally validate reference genes in RT-qPCR studies of Aspergillus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Wang ◽  
Tingting Ren ◽  
Prince Marowa ◽  
Haina Du ◽  
Zongchang Xu

AbstractQuantitative real-time polymerase chain reaction (qPCR) using a stable reference gene is widely used for gene expression research. Suaeda glauca L. is a succulent halophyte and medicinal plant that is extensively used for phytoremediation and extraction of medicinal compounds. It thrives under high-salt conditions, which promote the accumulation of high-value secondary metabolites. However, a suitable reference gene has not been identified for gene expression standardization in S. glauca under saline conditions. Here, 10 candidate reference genes, ACT7, ACT11, CCD1, TUA5, UPL1, PP2A, DREB1D, V-H+-ATPase, MPK6, and PHT4;5, were selected from S. glauca transcriptome data. Five statistical algorithms (ΔCq, geNorm, NormFinder, BestKeeper, and RefFinder) were applied to determine the expression stabilities of these genes in 72 samples at different salt concentrations in different tissues. PP2A and TUA5 were the most stable reference genes in different tissues and salt treatments, whereas DREB1D was the least stable. The two reference genes were sufficient to normalize gene expression across all sample sets. The suitability of identified reference genes was validated with MYB and AP2 in germinating seeds of S. glauca exposed to different NaCl concentrations. Our study provides a foundational framework for standardizing qPCR analyses, enabling accurate gene expression profiling in S. glauca.


Sign in / Sign up

Export Citation Format

Share Document