scholarly journals Fruit yield and root system distribution of 'Tommy Atkins' mango under different irrigation regimes

2014 ◽  
Vol 18 (4) ◽  
pp. 362-369 ◽  
Author(s):  
Marcelo R. dos Santos ◽  
Mauro A. Martinez ◽  
Sérgio L. R. Donato ◽  
Eugênio F. Coelho

This study aimed to evaluate the fruit yield and the distribution of 'Tommy Atkins' mango root system under different irrigation regimes in the semiarid region of Bahia. The experimental design was completely randomized with five treatments and three replicates: 1 - Irrigation supplying 100% of ETc in phases I, II and III; 2 - Regulated deficit irrigation (RDI) supplying 50% of ETc in phase I (beginning of flowering to early fruit growth); 3 - RDI supplying 50% ETc in phase II (start of expansion until the beginning of physiological maturity); 4 - RDI supplying 50% ETc in phase III (physiological mature fruits); 5 - No irrigation during all three phases. The regulated deficit irrigation supplying 50% of the ETc during phase I and II provided larger root length density of 'Tommy Atkins' mango. Regardless of management strategy, the roots were developed in all evaluated soil volume and the highest density is concentrated from 0.50 to 1.50 m distance from the trunk and in 0.20 to 0.90 m depth in the soil, that suggests this region to be the best place for fertilizer application as well for soil water sensor placement. The application of RDI during fruit set does not influence either root distribution or production. Root system and crop production is significantly reduced under no irrigation conditions.

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 423 ◽  
Author(s):  
Puglisi ◽  
Nicolosi ◽  
Vanella ◽  
Piero ◽  
Stagno ◽  
...  

The article presents the results of research consisting of the application of deficit irrigation (DI) criteria, combined with the adoption of micro-irrigation methods, on orange orchards (Citrus sinensis (L.) Osbeck) in Sicily (Italy) during the irrigation season of 2015. Regulated deficit irrigation (RDI, T3) and partial root-zone drying (PRD, T4) strategies were compared with full irrigation (T1) and sustained deficit irrigation (SDI, T2) treatments in terms of physiological, biochemical, and productive crop response. A geophysical survey (electrical resistivity tomography, ERT) was carried out to identify a link between the percentages of drying soil volume in T4 with leaves abscisic acid (ABA) signal. Results highlight that the orange trees physiological response to water stress conditions did not show particular differences among the different irrigation treatments, not inducing detrimental effects on crop production features. ABA levels in leaves were rather constant in all the treatments, except in T4 during late irrigation season. ERT technique identified that prolonged drying cycles during alternate PRD exposed more roots to severe soil drying, thus increasing leaf ABA accumulation.


2000 ◽  
Vol 125 (1) ◽  
pp. 135-142 ◽  
Author(s):  
A.M. Boland ◽  
P.H. Jerie ◽  
P.D. Mitchell ◽  
I. Goodwin ◽  
D.J. Connor

Individual and interactive effects of restricted root volume (RRV) and regulated deficit irrigation (RDI) on vegetative growth and mineral nutrition of peach trees [Prunus persica (L.) Batsch (Peach Group) `Golden Queen'] were studied over 3 years (1992-95). Trees were grown in lysimeters of five different volumes (0.025, 0.06, 0.15, 0.4, and 1.0 m3) with either full or deficit (RDI) irrigation. Increasing soil volume increased vegetative growth as measured by trunk cross-sectional area (TCA) (linear and quadratic, P < 0.011) and tree weight (linear, P < 0.001) with the final TCA ranging from 29.0 to 51.0 cm2 and tree weight ranging from 7.2 to 12.1 kg for the smallest to largest volumes. Root density measured at the completion of the experiment decreased with increasing soil volume (linear and quadratic, P < 0.001) with root length density declining from 24.0 to 2.0 cm·cm-3. RDI reduced vegetative growth by up to 70% as measured by weight of summer prunings. Root restriction was effective in controlling vegetative vigor and is a viable alternative for control of vegetative growth. Mineral nutrition did not limit tree growth.


Author(s):  
Qiang Chai ◽  
Yantai Gan ◽  
Cai Zhao ◽  
Hui-Lian Xu ◽  
Reagan M. Waskom ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 113
Author(s):  
Kelly Nascimento Leite ◽  
Daniel Fonseca de Carvalho ◽  
Jose Maria Tarjuelo Martin- Benito ◽  
Geocleber Gomes de Sousa ◽  
Alfonso Dominguez Padilla

The present study aimed to validate the MOPECO crop simulation model and to determine a viable irrigation management for watermelon in the semiarid region of Northeast Brazil, using methodologies of optimized regulated deficit irrigation (ORDI) and constant deficit irrigation (CDI). The experiment was carried out during October to December 2013 and the second one from July to August 2014 in plots of land of producers in the Baixo Acaraú Irrigated Perimeter – Ceará, Brazil. Treatments were characterized by ORDI management (70, 80, 90% ETa/ETm ratio) and CDI management along the entire cycle (70, 80 and 90% ETm) and control treatment, irrigated with 100% of the water requirement of the crop (ETm). In terms of saving of water resources, the results showed that management with regulated deficit irrigation leads to favorable and economically viable results for the farmer, of water saving, especially in a situation of severe water scarcity, irrigation management with regulated water deficit (ORDI) can provide favorable and economically viable results for the farmer. The highest value of WUE (41.8 kg m-3) was obtained with the treatment of lowest water volume applied (352.1 L) in the second experiment, decreasing with the increase in the water volume used. The ORDI methodology represents a better water use efficiency for all treatments of deficit applied compared to CDI treatments. The difference of ORDI and CDI methodology provided an increase of up to 200% in the gross margin obtained with the exploration of the watermelon culture which represents a range of R$ 986.00 in profit in a situation of water scarcity, as in the case of the studied region, the strategy with water supply of 70% of ETa/ETm ratio regulated by phenological stage was recommended in order to obtain highest water use efficiency.


2019 ◽  
Vol 18 (5) ◽  
pp. 123-129
Author(s):  
Rahmatollah Gholami ◽  
Seyed Morteza Zahedi

Water is the most important environmental factor in growth and fruit yield of trees. To study the effect of deficit irrigation on reproductive characteristics and yield of seven superior olive genotypes of D1, Dd1, Gw, Ps1, Bn3, Bn6, and Ds17, the present research was accomplished in Dallaho Olive Research Station of Sarpol-e zahab, Kermanshah, Iran, in 2014 and 2015. Seven superior olive genotypes were studied in a Randomized Complete Block Design with three replications and three irrigation regimes. The irrigation treatments include: 100% full irrigation (control), 75% deficit irrigation, and 50% deficit irrigation applied during the growth season. The results indicated that the genotypes had different reactions to the deficit irrigation regimes. Dd1 had the highest fruit weight while the lowest fruit weight was observed in Ps1 and Gw. The highest fruit yield was found in Bn3, Bn6, and Dd1 while the lowest was observed in Ps1. As a result, Bn6 and Dd1 are introduced as the genotypes which are resistant to drought in the field.


2018 ◽  
Vol 26 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Ibrahim Mubarak ◽  
Altayeb Hamdan

Abstract Enhancing water productivity for sustainable crop production and water savings represents a major challenge for agricultural water management. Pot experiments under open field conditions were conducted for two years, 2016 and 2017, to assess the effects of regulated deficit irrigation under mulch on onion crop production, following a 2 × 3 factorial experiment with two soil cover systems (wheat straw mulch and no-mulch) and three irrigation levels (100%, 80%, and 60% of crop evapotranspiration), with six replications.The results indicated that onion plants were responsive to straw mulching. Bulb diameter, total yield, dry matter, and water productivity were significantly enhanced under mulch whatever the irrigation level used. The seasonal crop water requirements also considerably decreased (about 33%). The results also showed the sensitivity of onion to water stress. Yield, dry matter, and water productivity were higher under full irrigation compared to the deficit irrigation. However, when mulch was used, regulated deficit irrigation highly significantly improved water productivity and onion crop quality and quantity; and this approach could be a promising management practice to meet water shortage consequences in the dry Mediterranean region.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2370
Author(s):  
Breno Leonan de Carvalho Lima ◽  
Ênio Farias de França e Silva ◽  
João Henrique Zonta ◽  
Cícero Pereira Cordão Terceiro Neto ◽  
Claudivan Feitosa de Lacerda ◽  
...  

Treated domestic sewage (TDS) can contribute to plant nutrition and improve crop production. However, there are no data for its use in coloured cotton under a deficit or excess irrigation in combination with potassium fertilization rates (KRs), mainly under semiarid tropical conditions. The research was conducted using a randomized complete block design in a factorial scheme (5 × 5, irrigation regimes vs. potassium rates), plus an additional treatment as the control ((5 × 5) + 1). The treatments consisted of five TDS irrigation regimes (50, 75, 100, 125, and 150% of crop evapotranspiration—ETC) and five KRs (0, 50, 100, 150, and 200% of the local crop recommendation), plus a control—CT— (irrigated with fresh water at 100% ETC and fertilized according to the local crop recommendation) and four replications. The optimal crop yield, water use efficiency, and potassium use efficiency were obtained when TDS was applied as a deficit irrigation treatment of 75% of ETc or as full irrigation (100% of ETC) and when associated with moderate increases in K fertilization. These treatments also resulted in a better fibre quality when compared to the CT, meeting or exceeding the requirements of the textile industry. Therefore, moderate deficit irrigation with TDS is indicated as an important strategy to save fresh water and to reduce the use of fertilizers, while having the potential to increase profit margins for cotton production in tropical semiarid regions.


2014 ◽  
Vol 66 (4) ◽  
pp. 73-80 ◽  
Author(s):  
Michał Koniarski ◽  
Bożena Matysiak

<p>The aim of this study was to analyze the physiological and morphological response of <em>Syringa meyeri </em>‘Palibin’ to different levels of irrigation and to evaluate regulated deficit irrigation (RDI) as a possible technique for saving water in nursery production and promoting of flowering. Plants were grown in 3 liter containers in an unheated greenhouse and were subjected to six irrigation treatments for 18 weeks from the be- ginning of June to mid-October 2011. A drip irrigation system was used. Irrigation treatments were established on the basis of evapotranspiration (ETp). Three constant irrigation treatments were used: 1) 1 ETp; 2) 0.75 ETp; 3) 0.5 ETp, while the other three with irrigation varying between phases were as follows: 4) 1–0.5–1; 5) 1–0.25–1; and 6) 0.5–1–0.5 ETp. The 0.75 ETp and 0.5 ETp irrigation regimes adversely affected the growth and visual quality index of plants as well as they resulted in reduced leaf conductance, transpiration, maximum quantum efficiency of photosystem II (Fv/Fm) and CCI (chlorophyll content index). Plants grown under the 1–0.5–1 ETp regime had the same morphological parameters as plants grown under the 0.5 ETp treatment. A further reduction of water quantity supplied to plants in the 1–0.25–1 ETp regime resulted in further deterioration of the visual quality index of plants. In this study, the quality index of plants exposed to 0.5–1–0.5 ETp was similar to control plants (1 ETp). These plants were lower, more compact, and had smaller leaves than control plants. The irrigation regimes imposed in this study had no significant effect on the number of floral buds formed in relation to the control regime, except for 1–0.25–1 ETp where this number decreased.</p>


Author(s):  
Marcelo R. dos Santos ◽  
Mauro A. Martinez ◽  
Sérgio L. R. Donato ◽  
Eugênio F. Coelho

The aim of this study was to evaluate the 'Tommy Atkins' mango yield and photosynthesis in regulated deficit irrigation (RDI) in semiarid conditions of Bahia, Brazil. The experimental design was a randomized block with five treatments and six replications: T1, irrigation supplying 100% crop evapotranspiration (ETc) in phases: I (beginning of flowering to early fruit growth), II (start of expansion until early physiological maturity) and phase III (physiologically mature fruits); T2, RDI with 50% ETc in phase I; T3, RDI with 50% ETc in phase II; T4, RDI with 50% ETc in phase III; T5, No irrigation. The soil water deficit causes a reduction in photosynthesis. Mango yield in treatment 4 was approximately 5.5 and 2 times greater than in treatments 5 and 2, respectively. The use of RDI with 50% water depth reduction applied in the third phase of 'Tommy Atkins' mango fruit development was efficient. The use of RDI with 50% ETc in the third phase of fruit development provided the best yield of 'Tommy Atkins' mango for the 350 g weight class.


Sign in / Sign up

Export Citation Format

Share Document