scholarly journals Antimicrobial activity of Uncaria tomentosa against oral human pathogens

2007 ◽  
Vol 21 (1) ◽  
pp. 46-50 ◽  
Author(s):  
Renzo Alberto Ccahuana-Vasquez ◽  
Silvana Soléo Ferreira dos Santos ◽  
Cristiane Yumi Koga-Ito ◽  
Antonio Olavo Cardoso Jorge

Uncaria tomentosa is considered a medicinal plant used over centuries by the peruvian population as an alternative treatment for several diseases. Many microorganisms usually inhabit the human oral cavity and under certain conditions can become etiologic agents of diseases. The aim of the present study was to evaluate the antimicrobial activity of different concentrations of Uncaria tomentosa on different strains of microorganisms isolated from the human oral cavity. Micropulverized Uncaria tomentosa was tested in vitro to determine the minimum inhibitory concentration (MIC) on selected microbial strains. The tested strains were oral clinical isolates of Streptococcus mutans, Staphylococcus spp., Candida albicans, Enterobacteriaceae and Pseudomonas aeruginosa. The tested concentrations of Uncaria tomentosa ranged from 0.25-5% in Müeller-Hinton agar. Three percent Uncaria tomentosa inhibited 8% of Enterobacteriaceae isolates, 52% of S. mutans and 96% of Staphylococcus spp. The tested concentrations did not present inhibitory effect on P. aeruginosa and C. albicans. It could be concluded that micropulverized Uncaria tomentosa presented antimicrobial activity on Enterobacteriaceae, S. mutans and Staphylococcus spp. isolates.

2017 ◽  
Vol 37 (4) ◽  
pp. 368-378 ◽  
Author(s):  
Jusciêne B. Moura ◽  
Agueda C. de Vargas ◽  
Gisele V. Gouveia ◽  
João J. de S. Gouveia ◽  
Juracy C. Ramos-Júnior ◽  
...  

ABSTRACT: Cladonia substellata Vainio is a lichen found in different regions of the world, including the Northeast of Brazil. It contains several secondary metabolites with biological activity, including usnic acid, which has exhibited a wide range of biological activities. The aim of this study was to evaluate the in vitro antimicrobial activity of the organic extract of C. substellata and purified usnic acid. Initially, Staphylococcus spp., derived from samples of skin and ears of dogs and cats with suspected pyoderma and otitis, were isolated and analyzed. In antimicrobial susceptibility testing against Staphylococcus spp., 77% (105/136) of the isolates were resistant to the antimicrobials tested. In the assessment of biofilm production, 83% (113/136) were classified as producing biofilm. In genetic characterization, 32% (44/136) were positive for blaZ, no isolate (0/136) was positive for the mecA gene, and 2% (3/136) were positive for the icaD gene. The in vitro antimicrobial activity of the organic extract of C. substellata and purified usnic acid against Staphylococcus spp. ranged from 0.25mg/mL to 0.0019mg/mL, inhibiting bacterial growth at low concentrations. The substances were more effective against biofilm-producing bacteria (0.65mg/mL-0.42mg/mL) when compared to non-biofilm producing bacteria (2.52mg/mL-2.71mg/mL). Usnic acid and the organic extract of C. substellata can be effective in the treatment of pyoderma and otitis in dogs and cats caused by Staphylococcus spp.


2014 ◽  
Vol 13 (02) ◽  
pp. 1450010
Author(s):  
Anandini Rout ◽  
Padan K. Jena ◽  
Debasish Sahoo ◽  
Umesh K. Parida ◽  
Birendra K. Bindhani

Silver nanoparticles ( AgNPs ) were prepared from the plant extract of N. arbor-tristis under atmospheric conditions through green synthesis and characterized by various physicochemical techniques like UV-Visible spectroscopy, IR Spectra, energy dispersive X-ray spectrometry (EDS), X-ray diffraction and transmission electron microscopy (TEM) and the results confirmed the synthesis of homogeneous and stable AgNPs by the plant extracts. The antimicrobial activity of AgNPs was investigated against most common bacteria found in burn wound Staphylococcus epidermidis and Pseudomonas aeruginosa. In these tests, Mueller Hinton agar plates were used with AgNPs of various concentrations, supplemented in liquid systems. P. aeruginosa was inhibited at the low concentration of AgNPs , whereas the growth-inhibitory effect on S. epidermidis was mild. These results suggest that AgNPs can be used as effective growth inhibitors of various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.


2009 ◽  
pp. 195-209 ◽  
Author(s):  
Marija Skrinjar ◽  
Nevena Nemet

Spices and herbs have been used as food additives since ancient times, as flavouring agents but also as natural food preservatives. A number of spices shows antimicrobial activity against different types of microorganisms. This article gives a literature review of recent investigations considering antimicrobial activity of essential oils widely used spices and herbs, such as garlic, mustard, cinnamon, cumin, clove, bay, thyme, basil, oregano, pepper, ginger, sage, rosemary etc., against most common bacteria and fungi that contaminate food (Listeria spp., Staphylococcus spp., Salmonella spp., Escherichia spp., Pseudomonas spp., Aspergillus spp., Cladosporium spp. and many others). Antimicrobial activity depends on the type of spice or herb, type of food and microorganism, as well as on the chemical composition and content of extracts and essential oils. Summarizing results of different investigations, relative antimicrobial effectiveness can be made, and it shows that cinnamon, cloves and mustrad have very strong antimicrobial potential, cumin, oregano, sage, thyme and rosemary show medium inhibitory effect, and spices such as pepper and ginger have weak inhibitory effect.


2019 ◽  
Author(s):  
Jacek Piatek ◽  
Henning Sommermeyer ◽  
Arleta Ciechelska-Rybarczyk ◽  
Malgorzata Bernatek

AbstractSupplementation with probiotics is considered as alternative treatment or adjuvant therapy for a number of bacterial infections for which the use of antibiotics is either not recommended or emerging antibiotic resistance is a major concern. Inhibition of the growth of pathogenic bacteria has been related to a number of different activities of probiotic bacteria or yeasts, some of which are very specific for particular strains of probiotics. As the different inhibition activities might act additively or even synergistically, probiotic multistrain products are discussed as potentially being more effective in pathogen inhibition than products containing one or a small number of probiotic strains. The present study investigated the in vitro inhibition of Escherichia (E.) coli, Shigella spp., Salmonella (S.) typhimurium and Clostridum (Cl.) difficile, all being human pathogens of significant worldwide healthcare concerns. The probiotic containing the yeast Sacharomyces (S.) boulardii inhibited all four pathogens. Similar inhibitions were observed with a bacterial probiotic containing three different strains (Pen, E/N and Oxy) of Lactobacillus (Lc.) rhamnosus. Compared to the inhibition found for these probiotics, the inhibitory effects of a complex multistrain synbiotic, containing nine different probiotic strains (6 Lactobacilli and 3 Bifidobacteria) and the prebiotic fructooligosaccharide (FOS), were significantly stronger. The stronger inhibition by the complex multistrain synbiotic was observed for all four tested pathogens. Our findings support a hypothesis that complex synbiotic products containing a larger number of different strains combined with a prebiotic component might be more attractive candidates for further clinical characterization than simpler probiotics containing one or only few probiotic strains.


2019 ◽  
Vol 9 (1) ◽  
pp. 216-219 ◽  
Author(s):  
Sureshrajan Soundararajan ◽  
Poornima Shanmugam ◽  
Nagarjun Nagarajan ◽  
Divya Palanisamy ◽  
Ponmurugan Ponnusamy

The aim of the present study is to investigate the antimicrobial and anti-oxidant potential of lichen Ramalina fastigiata collected from Kolli hills, Eastern Gahts of Tamil Nadu, India. Phytochemical study revealed that acetone extract of Ramalina fastigiata confirmed the presence of flavonoids, glycosides and phenols. Acetone extract of Ramalina fastigiata was tested against human pathogens, which exposed antimicrobial activity against Klebsiella pneumonia and Candida krusei with the inhibition rate of 2.1 mm and 1.3 mm respectively. The acetone extract of lichen Ramalina fastigiata exhibited significant antioxidant activity as well. Radical scavenging ability of Ramalina fastigiata was reported in terms of 61.53 % inhibition. Keywords: Lichen, Ramalina fastigiata, acetone extract, antimicrobial activity, anti-inflammatory potential


Author(s):  
Preeja K. Sundaresan ◽  
Kala P. Kesavan

Background: Sphaeranthus indicus Linn is a widely used medicinal plant in Indian traditional system of medicine against human pathogens. Alarming bacterial resistance is urging scientist to search for newer anti-microbial substances from the medicinal plants. The objective of the study was to evaluate the antibacterial activity of ethanolic extract of the whole plant Sphaeranthus indicus Linn (Asteraceae).Methods: The antibacterial activity of ethanolic extract of whole plant of Sphaeranthus indicus Linn was done against Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis and Staphylococcus aureus in Mueller Hinton Agar (MHA) and compared with ciprofloxacin as standard by disc diffusion method.Results: The study revealed that there was no zone of inhibition in doses of 100 mcg, 200 mcg and 300 mcg of ethanolic whole plant extract of Sphaeranthus indicus in MHA plates compared with ciprofloxacin 30 mcg.Conclusions: Ethanolic extract of Sphaeranthus indicus does not have antibacterial activity. Further studies are needed in different extracts and parts of the plant. Simultaneous studies can be done in different places to evaluate environmental factors and regional variations.


2021 ◽  
Vol 34 (2) ◽  
pp. 127-135
Author(s):  
Andrés Rojas ◽  
Clara Durango ◽  
Solanlly García ◽  
Diego Castañeda-Peláez ◽  
Dabeiba García ◽  
...  

Infections of the oral cavity have a broad microbial etiological profile that varies according to each microenvironment in the mouth. Such infections often require antimicrobial treatment, which can lead to the development of resistance. There is thus a need to find new therapeutic strategies based on natural plant-derived compounds. The aim of this study was to determine the phytochemical nuclei and the antimicrobial effect of Anacardium excelsum leaf and stem extracts, and of fractions derived from the leaf extract, against Streptococcus mutans ATCC 25175, Staphylococcus aureus ATCC 35548, Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 19433 and Candida albicans ATCC 10231. The plant material was collected from the Quindío Botanical Garden (Calarcá, Quindío-Colombia), located at an altitude of 1500 meters above sea level. Hydroalcoholic extracts of A. excelsum leaves and stems, and fractions of the hydroalcoholic leaf extract, were obtained by percolation extraction. Phytochemical nuclei were identified by thin layer chromatography. The antimicrobial activity of the extracts and fractions (at concentrations of 2, 5, 10, 20 and 40 mg / ml) against the five ATCC reference strains was evaluated using the well diffusion technique on Mueller-Hinton agar. The leaf extract showed no antimicrobial activity against E. coli, but it did show antimicrobial activity against S. mutans, S. aureus, E. faecalis and C. albicans, at a concentration of 10 mg/ml, with zones of inhibition of 9 to 11 mm. The ethyl acetate and acetone fractions obtained from A. excelsum leaf extract had greatest antimicrobial activity at 10 mg/ml. In conclusion, (1) the A. excelsum leaf extract, and the ethyl acetate and acetone fractions obtained from the leaf extract, had the greatest antimicrobial activity on all the study microorganisms, and (2) the phytochemical nuclei in the fractions (ethyl acetate and acetone) were found to contain phenolic-type compounds, tannins, triterpene-type terpenes and steroidal-type terpenes, which might explain the antimicrobial activity observed.


Sign in / Sign up

Export Citation Format

Share Document