scholarly journals The influence of low temperature on the evolution of concrete strength

2012 ◽  
Vol 5 (1) ◽  
pp. 68-83 ◽  
Author(s):  
V. Cecconello ◽  
B. Tutikian

The mechanical strength of concrete can be affected by many conditions, among them the proportion of the mixture and the influence of external agents, such as external temperatures. Thus, the objective of the paper is to analyze the influence of low temperature on the evolution of concrete strength, from the molding of tests specimens cured at various temperatures. The specimens were submitted in the first 7 days, as curing temperatures ranging from 0ºC to 25ºC, simulating the lowest possible value for the start of the cement hydrations reactions to the considered ideal for development resistances. The results of the experimental program demonstrated at lower cure temperatures the strength of the mixture develops more slowly, as might be expected, but also found after 14 days, the strength of the mixtures was reversed, i.e., concretes cured at higher temperatures lower values. Thus, it was concluded the concrete in cold weather can be beneficial to its mechanical performance to over time, at the expense constructive steps in normal temperature.

Alloy Digest ◽  
1965 ◽  
Vol 14 (5) ◽  

Abstract BOFORS 2RM2 is a hardenable stainless cast steel having good weldability, high mechanical strength and improved corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: SS-169. Producer or source: Aktiebolaget Bofors.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4362
Author(s):  
Renata Kotynia ◽  
Hussien Abdel Baky ◽  
Kenneth W. Neale

This paper presents an investigation of the bond mechanism between carbon fibre reinforced polymer (CFRP) laminates, concrete and steel in the near-surface mounted (NSM) CFRP-strengthened reinforced concrete (RC) beam-bond tests. The experimental program consisting of thirty modified concrete beams flexurally strengthened with NSM CFRP strips was published in. The effects of five parameters and their interactions on the ultimate load carrying capacities and the associated bond mechanisms of the beams are investigated in this paper with consideration of the following investigated parameters: beam span, beam depth, longitudinal tensile steel reinforcement ratio, the bond length of the CFRP strips and compressive concrete strength. The longitudinal steel reinforcement was cut at the beam mid-span in four beams to investigate a better assessment of the influence of the steel reinforcement ratio on the bond behaviour of CFRP to concrete bond behaviour. The numerical analysis implemented in this paper is based on a nonlinear micromechanical finite element model (FEM) that was used for investigation of the flexural behaviour of NSM CFRP-strengthened members. The 3D model based on advanced CFRP to concrete bond responses was introduced to modelling of tested specimens. The FEM procedure presents the orthotropic behaviour of the CFRP strips and the bond response between the CFRP and concrete. Comparison of the experimental and numerical results revealed an excellent agreement that confirms the suitability of the proposed FE model.


2020 ◽  
Vol 10 (2) ◽  
pp. 642 ◽  
Author(s):  
Luís Bernardo ◽  
Sérgio Lopes ◽  
Mafalda Teixeira

This article describes an experimental program developed to study the influence of longitudinal prestress on the behaviour of high-strength concrete hollow beams under pure torsion. The pre-cracking, the post-cracking and the ultimate behaviour are analysed. Three tests were carried out on large hollow high-strength concrete beams with similar concrete strength. The variable studied was the level of longitudinal uniform prestress. Some important conclusions on different aspects of the beams’ behaviour are presented. These conclusions, considered important for the design of box bridges, include the influence of the level of prestress in the cracking and ultimate behaviour.


2014 ◽  
Vol 1049-1050 ◽  
pp. 511-514
Author(s):  
Yong Hua Lao ◽  
Yue Shan Huang ◽  
Wei Rong Li ◽  
Ying Jun Wang

Skin Stapler is an alternative instrument, which makes surgy easily and quickly and owns fine-looking effect without scars after the wound healed, to traditional surgical suture for the wound skin sewing. Magnesium recently is considered to develop medical implants because of its beneficial biocompatibility and bioabsorability. Due its less mechanical strength than traditional 316L stainless steel used in common staple, this paper try to optimize the structure of pure magnesium skin staple by FEM models and simulation as so to assure its biomechanical safty. Using ADINA software, two staples with different pre-bended shoulders and the traditional staple without shoulder are modeling to analyze its stress and plastical strain during structural deformation under load. The results, not only of pure magnesium models but also of 316L stainless steel models, showed that the shoulders optimization on staple structure has important role in its mechanical performance. The research increases the possibility of bioabsorable magnesium material application on medical skin staple.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 638 ◽  
Author(s):  
Wenguang Jiang ◽  
Xiangguo Li ◽  
Yang Lv ◽  
Mingkai Zhou ◽  
Zhuolin Liu ◽  
...  

The influence of graphene oxide (GO) and polyvinyl alcohol (PVA) fiber on the mechanical performance, durability, and microstructure of cement-based materials was investigated in this study. The results revealed that compared with a control sample, the mechanical strength and durability of cement-based materials were significantly improved by adding PVA fiber and GO. The compressive and flexural strength at 28 d were increased by 30.2% and 39.3%, respectively. The chloride migration coefficient at 28 d was reduced from 7.3 × 10−12 m2/s to 4.3 × 10−12 m2/s. Under a sulfate corrosion condition for 135 d, the compressive and flexural strength still showed a 13.9% and 12.3% gain, respectively. Furthermore, from the Mercury Intrusion Porosimetry (MIP) test, with the incorporation of GO, the cumulative porosity decreased from more than 0.13 cm3/g to about 0.03 cm3/g, and the proportion of large capillary pores reduced from around 80% to 30% and that of medium capillary pores increased from approximately 20% to 50%. Scanning electron microscope (SEM) images showed a significant amount of hydration products adhering to the surface of PVA fiber in the GO and PVA fiber modified sample. The addition of GO coupling with PVA fiber in cement-based materials could promote hydration of cement, refine the microstructure, and significantly improve mechanical strength and durability.


2007 ◽  
Vol 97 (4) ◽  
pp. 1217-1249 ◽  
Author(s):  
Michael Conlin ◽  
Ted O'Donoghue ◽  
Timothy J Vogelsang

Evidence suggests that people understand qualitatively how tastes change over time, but underestimate the magnitudes. This evidence is limited, however, to laboratory evidence or surveys of reported happiness. We test for such projection bias in field data. Using data on catalog orders of cold-weather items, we find evidence of projection bias over the weather—specifically, people's decisions are overinfluenced by the current weather. Our estimates suggest that if the order-date temperature declines by 30°F, the return probability increases by 3.95 percent. We also estimate a structural model to measure the magnitude of the bias. (JEL D12, L81)


Author(s):  
F. Longo ◽  
A. Cascardi ◽  
P. Lassandro ◽  
M. A. Aiello

AbstractAll over the world, a large part of existing buildings is not adequate to satisfy the safety requirement and the thermal comfort criteria. For this reason, the interest in structural and energy retrofitting systems has steadily grown in the last decades. In this scenario, an innovative thermal resistant geopolymer mortar has been developed and used for Inorganic Matrix Composite (IMC) systems aimed to a combined seismic and energy new retrofitting technique. The geopolymer-based IMC is able to ensure competitive mechanical properties with respect to the traditional lime-based IMCs and, at the same time, a significant reduction in thermal conductivity. In this paper, an experimental program is reported considering small-scaled masonry panels with double-side IMC-retrofitting and determining both the in-plane shear strength and the thermal resistance. The experimental shear tests are aimed to compare the mechanical performance of the geopolymer innovative systems with those of the traditional lime-based ones. Moreover, the thermal resistance gain of the innovative solutions was measured and compared with traditional systems. The results evidenced the effectiveness of the proposed technique that significantly improved the performances of masonry walls from both the thermal and the mechanical point of view.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012059
Author(s):  
Z J Yang ◽  
X Li ◽  
G C Li ◽  
S C Peng

Abstract Hollow concrete-filled steel tubular (CFST) member is mainly adopted in power transmission and transformation structures, but when it is used in the superstructure with complex stress, the hollow CFST member has a low bearing capacity and is prone to brittle failure. To improve the mechanical performance of hollow CFST members, a new type of reinforced hollow high strength concrete-filled square steel tube (RHCFSST) was proposed, and its axial compression performance was researched. 18 finite element analysis (FEA) models of axially loaded RHCFSST stub columns were established through FEA software ABAQUS. The whole stress process of composite columns was studied, and parametric studies were carried out to analyze the mechanical performance of the member. Parameters of the steel strength, steel ratio, deformed bar and sandwich concrete strength were varied. Based on the simulation results, the stress process of members can be divided into four stages: elastic stage, elastoplastic stage, descending stage and gentle stage. With the increase of steel strength, steel ratio, the strength of sandwich concrete and the addition of deformed bars, the ultimate bearing capacity of members also increases. Additionally, the increment of those parameters will improve the ductility of the member, except for the sandwich concrete strength.


Sign in / Sign up

Export Citation Format

Share Document