scholarly journals In vitro force delivery of nickel-titanium superelastic archwires in vertical displacement

2012 ◽  
Vol 17 (6) ◽  
pp. 26-30
Author(s):  
Aisha de Souza Gomes Stumpf ◽  
Karina dos Santos Mundstock ◽  
Daniel Mundstock ◽  
Carlos Alberto Mundstock

OBJECTIVE: The purpose of this study was to evaluate the force delivered by different superlastic nickel-titanium wires during vertical displacement, in order to determine whether their stress release meets the criteria for constant and light forces that are usually accredited to these archwires. METHOD: Ten samples of 6 brands of 0.016-in archwires (Ormco, GAC, Morelli, TP, American Orthodontics e Rocky Mountain) were tested in a complete metal model using Dynalock brackets (3M Unitek™). In the canine position, there was a sliding bracket connected to a pole. This set was related to a load cell of 0.5 kg attached to a universal testing machine (Autograph AG-199kNG, Shimadzu). The crosshead speed was 0.5 mm/min and the maximum displacement was 1.0 mm. The model was submerged in temperature-controlled water. The results were analyzed by ANOVA (p < 0.05), using the software SAS System 8.02, Cry, NC, USA. RESULTS: The TP archwire had the lowest force throughout the test, although the final force was high (277.91 g). The Rocky Mountain archwire had the highest force release (455.41 g). CONCLUSION: The different brands of wires tested in this study failed in delivering low and constant forces as expected from superlastic nickel-titanium wires. The forces were extremely heavy for a vertical tooth movement.

2014 ◽  
Vol 4 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Vinit Singh ◽  
Swati Acharya ◽  
Satyabrata Patnaik ◽  
Smruti Bhusan Nanda

Introduction: During sliding mechanics, frictional resistance is an important counterforce to orthodontic tooth movement; whichmust be controlled to allow application of light continuous forces.Objective: To investigate static and kinetic frictional resistance between three orthodontic brackets: ceramic, self-ligating, andstainless steel, and three 0.019×0.025” archwires: stainless steel, nickel-titanium, titanium-molybdenum.Materials & Method: The in vitro study compared the effects of stainless steel, nickel-titanium, and beta-titanium archwires onfrictional forces of three orthodontic bracket systems: ceramic, self-ligating, and stainless steel brackets. All brackets had 0.022”slots, and the wires were 0.019×0.025”. Friction was evaluated in a simulated half-arch fixed appliance on a testing machine. Thestatic and kinetic friction data were analyzed with 1-way analysis of variance (ANOVA) and post-hoc Duncan multiple rangetest.Result: Self-ligating (Damon) brackets generated significantly lower static and kinetic frictional forces than stainless steel (Gemini)and ceramic brackets (Clarity). Among the archwire materials, Beta-titanium showed the maximum amount of frictional forceand stainless steel archwires had the lowest frictional force.Conclusion: The static and kinetic frictional force for stainless steel bracket was lowest in every combination of wire.


2015 ◽  
Vol 5 (1) ◽  
pp. 22-26
Author(s):  
Muzin Shahi Shaik ◽  
Snigdha Pattanaik ◽  
Sudhakar Pathuri ◽  
Arunachalam Sivakumar

Introduction: Bond strength is an important property and determines the amount of force delivered and treatment duration in orthodontics. Many light-cured bonding materials are being used; but it is required to determine the most efficient one withdesired bond strength. Objective: To determine and compare the shear bond strength of three visible light-cured composites (Transbond XT, Heliositand Enlight) and two self-cured composites (Rely-a-bond and Concise). Materials & Method: 100 extracted premolars were collected and randomly divided into 5 test groups of different adhesives. Brackets were bonded to the teeth in each test group with the respective adhesive according to the manufacturer’s instructions. Each specimen was debonded using Universal Testing Machine and the shear bond strength for each specimen was calculated. All the groups were compared by ANOVA one-way test. Results: There were statistically significant differences among the five groups (P<0.05). The shear bond strength of Enlight (13.92 ± 3.92) is similar to Transbond XT (14.30 ± 4.35). Conclusion: Light cure composites showed higher bond strength than self cure composites.


2016 ◽  
Vol 45 (2) ◽  
pp. 71-77 ◽  
Author(s):  
Jurandir Antonio BARBOSA ◽  
Carlos Nelson ELIAS ◽  
Roberta Tarkany BASTING

Abstract Introduction The Barbosa Versatile bracket design may provide lower frictional force and greater sliding. However, no in vitro studies have shown its sliding mechanisms and frictional resistance, particularly in comparison with other self-ligating or conventional brackets. Objective To compare the frictional resistance among self-ligating brackets (EasyClip/ Aditek, Damon MX/ Ormco and In Ovation R/ GAC); conventional brackets (Balance Roth/ GAC, and Roth Monobloc/ Morelli); and Barbosa Versatile bracket (Barbosa Versatile/ GAC) with different angles and arch wires. Material and method Brackets were tested with the 0.014", 0.018", 0.019"×0.025" and 0.021"×0.025" stainless steel wires, with 0, 5, 10, 15 and 20 degree angulations. Tying was performed with elastomeric ligature for conventional and Barbosa Versatile brackets, or with a built-in clip system of the self-ligating brackets. A universal testing machine was used to obtain sliding strength and friction value readouts between brackets and wires. Result Three-way factorial ANOVA 4×5×6 (brackets × angulation × wire) and Tukey tests showed statistically significant differences for all factors and all interactions (p<0.0001). Static frictional resistance showed a lower rate for Barbosa Versatile bracket and higher rates for Roth Monobloc and Balance brackets. Conclusion The lowest frictional resistance was obtained with the Barbosa Versatile bracket and self-ligating brackets in comparison with the conventional type. Increasing the diameter of the wires increased the frictional resistance. Smaller angles produced less frictional resistance.


PRILOZI ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 225-230 ◽  
Author(s):  
Aneta Mijoska ◽  
Mirjana Popovska

Abstract Metal-ceramic and all-ceramic prosthetic restorations in the patient mouth are often damaged by esthetic and functional problems that reduce their success and longevity. Аim: To evaluate methods for testing mechanical characteristics of dental ceramics through analysis of different testing methods. Material and methods: Dental ceramic materials are tested with in vivo and in vitro methods for their most important mechanical characteristics: hardness, toughness, flexural strength and abrasion. In vitro testing methods are faster and more efficient, without subjective factors from the patient according to ISO standards. Testing is done with universal testing machines, like Zwick 1445, Universal Testing Machine (Zwick DmbH & Co.KG, Ulm, Germany), Instron 4302 (Instron Corporation, England), MTS Sintech ReNew 1123 or in oral chewing simulators. Results: According to the testing results, flexure strength is one of the most important characteristic of the dental ceramic to be tested, by the uniaxial and biaxial tests. Uniaxial tests three-point and four-point flexure are not most appropriate because the main stress on the lower side of the tested specimens is tension that causes beginning fractures at the places with superficial flow. Uniaxial results for flexural strength are lower than actual force, while with biaxial test defects and flows on the edges of tested specimens are not directly loaded. Conclusion: Biaxial flexural method has advantages over uniaxial because of real strength results, but also for simple shape and preparing of the testing specimens.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yu-Chih Huang ◽  
Kuen-Yu Huang ◽  
Bing-Yuan Yang ◽  
Chun-Han Ko ◽  
Haw-Ming Huang

An antiadhesion barrier membrane is an important biomaterial for protecting tissue from postsurgical complications. However, there is room to improve these membranes. Recently, carboxymethylcellulose (CMC) incorporated with hyaluronic acid (HA) as an antiadhesion barrier membrane and drug delivery system has been reported to provide excellent tissue regeneration and biocompatibility. The aim of this study was to fabricate a novel hydrogel membrane composed of berberine-enriched CMC prepared from bark of theP. amurensetree and HA (PE-CMC/HA). In vitro anti-inflammatory properties were evaluated to determine possible clinical applications. The PE-CMC/HA membranes were fabricated by mixing PE-CMC and HA as a base with the addition of polyvinyl alcohol to form a film. Tensile strength and ultramorphology of the membrane were evaluated using a universal testing machine and scanning electron microscope, respectively. Berberine content of the membrane was confirmed using a UV-Vis spectrophotometer at a wavelength of 260 nm. Anti-inflammatory property of the membrane was measured using a Griess reaction assay. Our results showed that fabricated PE-CMC/HA releases berberine at a concentration of 660 μg/ml while optimal plasticity was obtained at a 30 : 70 PE-CMC/HA ratio. The berberine-enriched PE-CMC/HA had an inhibited 60% of inflammation stimulated by LPS. These results suggest that the PE-CMC/HA membrane fabricated in this study is a useful anti-inflammatory berberine release system.


2012 ◽  
Vol 13 (3) ◽  
pp. 389-393
Author(s):  
Deepthi Kalahasti ◽  
Smitha Sharan ◽  
Harish Konde

ABSTRACT Aims To evaluate the effect of chemical disinfectant on the transverse strength of heat-polymerized acrylic resins subjected to mechanical and chemical polishing. Materials and methods A total of 256 rectangular specimens (65 × 10 × 3 mm) 128 per resin (Lucitone-199 and Acralyn-H) were fabricated. One side of each specimen was not polished and the other was either mechanically (n = 96) or chemically (n = 96) polished and immersed for 10, 30 and 60 minutes in 2% alkaline glutaraldehyde. Mechanically polished (n = 32) and chemically polished (n = 32) control specimens were immersed only in distilled water. The transverse strength (N/mm2) was tested for failure in a universal testing machine, at a crosshead speed of 5 mm/min. Data were statistically analyzed using 2-way ANOVA and Student t-test. Results chemical polishing resulted in significantly lower transverse strength values than mechanical polishing. Lucitone- 199 resin demonstrated the highest overall transverse strength for the materials tested. Heat-polymerized acrylic resins either mechanically or chemically polished, did not demonstrate significant changes in transverse strength during immersion in the disinfecting solution tested, regardless of time of immersion. Conclusion Lucitone-199 resin demonstrated the highest overall transverse strength for the materials tested and significantly stronger than Acralyn-H with either type of polishing following immersion in 2% alkaline glutaraldehyde. Clinical significance There is a concern that immersion in chemical solutions often used for cleansing and disinfection of prostheses may undermine the strength and structure of denture base resins. In this study it was observed that, the transverse strength of samples of Lucitone-199 was higher than that of the samples of Acralyn-H. The chances of fracture of the denture made of Lucitone-199 are less than that of dentures made of Acralyn-H. The chemically polished dentures may be more prone to fracture than mechanically polished dentures. How to cite this article Sharan S, Kavitha HR, Konde H, Kalahasti D. Effect of Chemical Disinfectant on the Transverse Strength of Heat-polymerized Acrylic Resins Subjected to Mechanical and Chemical Polishing: An in vitro Study. J Contemp Dent Pract 2012;13(3):389-393.


2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Alok Ranjan ◽  
Anil Kumar Biradar ◽  
Ankita Patel ◽  
Vanessa Varghese ◽  
Ankita Pawar ◽  
...  

Objectives: This studied aimed to measure the yield strength and stress relaxation properties of three commercially available thermoplastic aligner materials. Methods: The three different thermoplastics aligner materials Duran (Scheu, Iserlohn, Germany), Erkodur (Pfalzgrafenweiler, Erkodent, Germany) and Track (Forestadent, Germany) were selected. A three-point bending test was carried out via the universal testing machine to measure their yield strength and stress relaxation properties. An independent t- test was performed for intergroup comparison. P-value < 0.05 was set as the level of significance. Results: All the selected three polymers liberate a notable amount of stress during 24 hours. The highest stress release was observed in Duran i.e. 18.96 N/cm2 as compared to Erkodur, which was 13.96 N/cm2 and Track, which was 13.18 N/cm2. The yield strength of Duran was the highest (75.85 Mpa) compared to Track and Erkodur with the yield strength of 52.75 Mpa and 55.86 Mpa, respectively. Conclusions: Tooth movement is influenced by the composition of aligner material and its thickness. Duran had the highest stress release and yield strength. Stress released by different aligners exceeds around half of the initial stress value, which directly affects the orthodontic force application and subsequent tooth movement.


2017 ◽  
Vol 7 (2) ◽  
pp. 86-90
Author(s):  
Vanitha U Shenoy ◽  
Ritesh B Pawar ◽  
Sumanthini MV ◽  
Saimanaaz AH Shaikh

ABSTRACT Aim The aim of the article is to compare the effects of three different nickel–titanium (NiTi) rotary instruments on the fracture resistance of obturated roots. Materials and methods A total of 100 permanent mandibular premolars were randomly divided into four groups of 25 teeth each and biomechanical preparation was done: group I: stainless steel K-hand files (HFs), group II: ProTaper NiTi instruments (PT), group III: HyFlex CM NiTi instruments (HCM), and group IV: K3XF NiTi instruments. Following root canal preparation, the canals were obturated using lateral condensation. A light body silicone impression material was used to simulate the periodontal ligament (PDL). Fracture resistance was tested in an Instron testing machine. Statistical analysis Data were analyzed with Kruskal–Wallis test. Results There was no difference in significance (p < 0.05) among the different groups tested with respect to their fracture resistances. Conclusion The present study concluded that rotary instrumentation could result in an increased chance for dentinal defects as compared with hand instrumentation. Greater taper rotary NiTi instruments do not increase the fracture susceptibility of roots, which in turn depends on various factors other than instrumentation alone. Clinical significance Greater taper achieved by rotary NiTi files during canal preparation facilitates efficient irrigation and complete debridement. Root fracture might occur as a result of microcracks or craze lines that propagate with repeated stress application by occlusal forces and also during canal preparation. Based on the results obtained, it can be decided whether the use of the newer rotary NiTi system contributes to endodontic success and long-term survival of endodontically treated teeth. How to cite this article Shaikh SAH, Shenoy VU, Sumanthini MV, Pawar RB. Comparison of the Effects of Three Different Nickel–titanium Rotary Instruments on the Fracture Resistance of Obturated Roots: An in vitro Study. J Contemp Dent 2017;7(2):86-90.


2016 ◽  
Vol 21 (1) ◽  
pp. 83-88
Author(s):  
Marcelo Faria da Silva ◽  
Célia Regina Maia Pinzan-Vercelino ◽  
Júlio de Araújo Gurgel

Objective: The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi) orthodontic wires adjacent to the portion submitted to heat treatment. Material and Methods: A total of 106 segments of NiTi wires (0.019 x 0.025-in) and heat-activated NiTi wires (0.016 x 0.022-in) from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40), while the other distal portion of the same archwire was used as a heating-free control group (n = 40). Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. Results: There were no statistically significant differences between the tested groups with the same size and brand of wire. Conclusions: Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions.


2014 ◽  
Vol 1025-1026 ◽  
pp. 385-390
Author(s):  
Niwat Anuwongnukroh ◽  
Surachai Dechkunakorn ◽  
Jirawat Arunakol ◽  
Wassana Wichai

One of the problems that often occurred during orthodontic treatment is bracket failure. This is usually the result either of the patient’s accidentally, applying inappropriate forces to the bracket or of a poor bonding technique. Thus, a significant number of teeth have to be rebonded in an orthodontic practice. Objective: The aim of this study was to evaluate the in vitro initial repeated shear bond strength of the three adhesive systems at two and five minutes after placement of a bracket. Materials and Methods: The three bonding agent adhesives are System1+, Rely-a-bond, Unite. Two hundred and forty human premolar teeth were divided into two groups, a control and an experimental group. Each group was further divided into three subgroups for bonding brackets with the three different adhesives. Only the teeth in the experimental group were sequentially bonded and debonded two times with the same adhesive. The teeth in control and experimental groups were tested for shear bond strength (at two and five minutes after the bracket was bonded) with an Instron testing machine. Results: The studies were found that : (1) there were differences between the shear bond strength of each adhesive in the control and experimental group. Unite had the highest shear bond strength followed by Rely-a-bond and System1+ at two minutes and five minutes, (2) the experiment group ( rebonded brackets) had higher shear bond strength than control group and Unite had in significant difference (p<0.05) of initial repeated bond strength with System1+ and Rely-a-bond at two minutes and five minutes and (3) there were mostly significant difference (p<0.05) between repeated shear bond strength at two minutes and repeated shear bond strength at five minutes. Conclusion: There were significant difference of the initial repeated shear bond strength of each adhesive. The orthodontists should be aware of applying force for tooth movement into the repeated bonding brackets.


Sign in / Sign up

Export Citation Format

Share Document