scholarly journals Embedding Projection for Targeted Cross-lingual Sentiment: Model Comparisons and a Real-World Study

2019 ◽  
Vol 66 ◽  
Author(s):  
Jeremy Barnes ◽  
Roman Klinger

Sentiment analysis benefits from large, hand-annotated resources in order to train and test machine learning models, which are often data hungry. While some languages, e.g., English, have a vast arrayof these resources, most under-resourced languages do not, especially for fine-grained sentiment tasks, such as aspect-level or targeted sentiment analysis. To improve this situation, we propose a cross-lingual approach to sentiment analysis that is applicable to under-resourced languages and takes into account target-level information. This model incorporates sentiment information into bilingual distributional representations, byjointly optimizing them for semantics and sentiment, showing state-of-the-art performance at sentence-level when combined with machine translation. The adaptation to targeted sentiment analysis on multiple domains shows that our model outperforms other projection-based bilingual embedding methods on binary targetedsentiment tasks. Our analysis on ten languages demonstrates that the amount of unlabeled monolingual data has surprisingly little effect on the sentiment results. As expected, the choice of a annotated source language for projection to a target leads to better results for source-target language pairs which are similar. Therefore, our results suggest that more efforts should be spent on the creation of resources for less similar languages tothose which are resource-rich already. Finally, a domain mismatch leads to a decreased performance. This suggests resources in any language should ideally cover varieties of domains.

Author(s):  
Akshi Kumar ◽  
Victor Hugo C. Albuquerque

Sentiment analysis on social media relies on comprehending the natural language and using a robust machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. The cultural miscellanies, geographically limited trending topic hash-tags, access to aboriginal language keyboards, and conversational comfort in native language compound the linguistic challenges of sentiment analysis. This research evaluates the performance of cross-lingual contextual word embeddings and zero-shot transfer learning in projecting predictions from resource-rich English to resource-poor Hindi language. The cross-lingual XLM-RoBERTa classification model is trained and fine-tuned using the English language Benchmark SemEval 2017 dataset Task 4 A and subsequently zero-shot transfer learning is used to evaluate the classification model on two Hindi sentence-level sentiment analysis datasets, namely, IITP-Movie and IITP-Product review datasets. The proposed model compares favorably to state-of-the-art approaches and gives an effective solution to sentence-level (tweet-level) analysis of sentiments in a resource-poor scenario. The proposed model compares favorably to state-of-the-art approaches and achieves an average performance accuracy of 60.93 on both the Hindi datasets.


2020 ◽  
Vol 34 (05) ◽  
pp. 8600-8607
Author(s):  
Haiyun Peng ◽  
Lu Xu ◽  
Lidong Bing ◽  
Fei Huang ◽  
Wei Lu ◽  
...  

Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from “Waiters are very friendly and the pasta is simply average” could be (‘Waiters’, positive, ‘friendly’). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.


2020 ◽  
Vol 34 (05) ◽  
pp. 7797-7804
Author(s):  
Goran Glavašš ◽  
Swapna Somasundaran

Breaking down the structure of long texts into semantically coherent segments makes the texts more readable and supports downstream applications like summarization and retrieval. Starting from an apparent link between text coherence and segmentation, we introduce a novel supervised model for text segmentation with simple but explicit coherence modeling. Our model – a neural architecture consisting of two hierarchically connected Transformer networks – is a multi-task learning model that couples the sentence-level segmentation objective with the coherence objective that differentiates correct sequences of sentences from corrupt ones. The proposed model, dubbed Coherence-Aware Text Segmentation (CATS), yields state-of-the-art segmentation performance on a collection of benchmark datasets. Furthermore, by coupling CATS with cross-lingual word embeddings, we demonstrate its effectiveness in zero-shot language transfer: it can successfully segment texts in languages unseen in training.


2020 ◽  
pp. 016555152096278
Author(s):  
Rouzbeh Ghasemi ◽  
Seyed Arad Ashrafi Asli ◽  
Saeedeh Momtazi

With the advent of deep neural models in natural language processing tasks, having a large amount of training data plays an essential role in achieving accurate models. Creating valid training data, however, is a challenging issue in many low-resource languages. This problem results in a significant difference between the accuracy of available natural language processing tools for low-resource languages compared with rich languages. To address this problem in the sentiment analysis task in the Persian language, we propose a cross-lingual deep learning framework to benefit from available training data of English. We deployed cross-lingual embedding to model sentiment analysis as a transfer learning model which transfers a model from a rich-resource language to low-resource ones. Our model is flexible to use any cross-lingual word embedding model and any deep architecture for text classification. Our experiments on English Amazon dataset and Persian Digikala dataset using two different embedding models and four different classification networks show the superiority of the proposed model compared with the state-of-the-art monolingual techniques. Based on our experiment, the performance of Persian sentiment analysis improves 22% in static embedding and 9% in dynamic embedding. Our proposed model is general and language-independent; that is, it can be used for any low-resource language, once a cross-lingual embedding is available for the source–target language pair. Moreover, by benefitting from word-aligned cross-lingual embedding, the only required data for a reliable cross-lingual embedding is a bilingual dictionary that is available between almost all languages and the English language, as a potential source language.


Author(s):  
Moemmur Shahzad ◽  
Ayesha Amin ◽  
Diego Esteves ◽  
Axel-Cyrille Ngonga Ngomo

We investigate the problem of named entity recognition in the user-generated text such as social media posts. This task is rendered particularly difficult by the restricted length and limited grammatical coherence of this data type. Current state-of-the-art approaches rely on external sources such as gazetteers to alleviate some of these restrictions. We present a neural model able to outperform state of the art on this task without recurring to gazetteers or similar external sources of information. Our approach relies on word-, character-, and sentence-level information for NER in short-text. Social media posts like tweets often have associated images that may provide auxiliary context relevant to understand these texts. Hence, we also incorporate visual information and introduce an attention component which computes attention weight probabilities over textual and text-relevant visual contexts separately. Our model outperforms the current state of the art on various NER datasets. On WNUT 2016 and 2017, our model achieved 53.48\% and 50.52\% F1 score, respectively. With Multimodal model, our system also outperforms the current SOTA with an F1 score of 74\% on the multimodal dataset. Our evaluation further suggests that our model also goes beyond the current state-of-the-art on newswire data, hence corroborating its suitability for various NER tasks.


2020 ◽  
Vol 8 ◽  
pp. 109-124
Author(s):  
Shuyan Zhou ◽  
Shruti Rijhwani ◽  
John Wieting ◽  
Jaime Carbonell ◽  
Graham Neubig

Cross-lingual entity linking (XEL) is the task of finding referents in a target-language knowledge base (KB) for mentions extracted from source-language texts. The first step of (X)EL is candidate generation, which retrieves a list of plausible candidate entities from the target-language KB for each mention. Approaches based on resources from Wikipedia have proven successful in the realm of relatively high-resource languages, but these do not extend well to low-resource languages with few, if any, Wikipedia pages. Recently, transfer learning methods have been shown to reduce the demand for resources in the low-resource languages by utilizing resources in closely related languages, but the performance still lags far behind their high-resource counterparts. In this paper, we first assess the problems faced by current entity candidate generation methods for low-resource XEL, then propose three improvements that (1) reduce the disconnect between entity mentions and KB entries, and (2) improve the robustness of the model to low-resource scenarios. The methods are simple, but effective: We experiment with our approach on seven XEL datasets and find that they yield an average gain of 16.9% in Top-30 gold candidate recall, compared with state-of-the-art baselines. Our improved model also yields an average gain of 7.9% in in-KB accuracy of end-to-end XEL. 1


2017 ◽  
Vol 5 ◽  
pp. 279-293 ◽  
Author(s):  
Mohammad Sadegh Rasooli ◽  
Michael Collins

We describe a simple but effective method for cross-lingual syntactic transfer of dependency parsers, in the scenario where a large amount of translation data is not available. This method makes use of three steps: 1) a method for deriving cross-lingual word clusters, which can then be used in a multilingual parser; 2) a method for transferring lexical information from a target language to source language treebanks; 3) a method for integrating these steps with the density-driven annotation projection method of Rasooli and Collins (2015). Experiments show improvements over the state-of-the-art in several languages used in previous work, in a setting where the only source of translation data is the Bible, a considerably smaller corpus than the Europarl corpus used in previous work. Results using the Europarl corpus as a source of translation data show additional improvements over the results of Rasooli and Collins (2015). We conclude with results on 38 datasets from the Universal Dependencies corpora.


Author(s):  
Xiangying Ran ◽  
Yuanyuan Pan ◽  
Wei Sun ◽  
Chongjun Wang

Aspect-based sentiment analysis (ABSA) is a fine-grained task. Recurrent Neural Network (RNN) model armed with attention mechanism seems a natural fit for this task, and actually it achieves the state-of-the-art performance recently. However, previous attention mechanisms proposed for ABSA may attend irrelevant words and thus downgrade the performance, especially when dealing with long and complex sentences with multiple aspects. In this paper, we propose a novel architecture named Hierarchical Gate Memory Network (HGMN) for ABSA: firstly, we employ the proposed hierarchical gate mechanism to learn to select the related part about the given aspect, which can keep the original sequence structure of sentence at the same time. After that, we apply Convolutional Neural Network (CNN) on the final aspect-specific memory. We conduct extensive experiments on the SemEval 2014 and Twitter dataset, and results demonstrate that our model outperforms attention based state-of-the-art baselines.


2015 ◽  
Vol 41 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Dehong Gao ◽  
Furu Wei ◽  
Wenjie Li ◽  
Xiaohua Liu ◽  
Ming Zhou

In this article we address the task of cross-lingual sentiment lexicon learning, which aims to automatically generate sentiment lexicons for the target languages with available English sentiment lexicons. We formalize the task as a learning problem on a bilingual word graph, in which the intra-language relations among the words in the same language and the inter-language relations among the words between different languages are properly represented. With the words in the English sentiment lexicon as seeds, we propose a bilingual word graph label propagation approach to induce sentiment polarities of the unlabeled words in the target language. Particularly, we show that both synonym and antonym word relations can be used to build the intra-language relation, and that the word alignment information derived from bilingual parallel sentences can be effectively leveraged to build the inter-language relation. The evaluation of Chinese sentiment lexicon learning shows that the proposed approach outperforms existing approaches in both precision and recall. Experiments conducted on the NTCIR data set further demonstrate the effectiveness of the learned sentiment lexicon in sentence-level sentiment classification.


Author(s):  
Siyu Zhu ◽  
Jin Qi ◽  
Jie Hu ◽  
Haiqing Huang

Abstract With the increasing demand for a personalized product and rapid market response, many companies expect to explore online user-generated content (UGC) for intelligent customer hearing and product redesign strategy. UGC has the advantages of being more unbiased than traditional interviews, yielding in-time response, and widely accessible with a sheer volume. From online resources, customers’ preferences toward various aspects of the product can be exploited by promising sentiment analysis methods. However, due to the complexity of language, state-of-the-art sentiment analysis methods are still not accurate for practice use in product redesign. To tackle this problem, we propose an integrated customer hearing and product redesign system, which combines the robust use of sentiment analysis for customer hearing and coordinated redesign mechanisms. Ontology and expert knowledges are involved to promote the accuracy. Specifically, a fuzzy product ontology that contains domain knowledges is first learned in a semi-supervised way. Then, UGC is exploited with a novel ontology-based fine-grained sentiment analysis approach. Extracted customer preference statistics are transformed into multilevels, for the automatic establishment of opportunity landscapes and house of quality table. Besides, customer preference statistics are interactively visualized, through which representative customer feedbacks are concurrently generated. Through a case study of smartphone, the effectiveness of the proposed system is validated, and applicable redesign strategies for a case product are provided. With this system, information including customer preferences, user experiences, using habits and conditions can be exploited together for reliable product redesign strategy elicitation.


Sign in / Sign up

Export Citation Format

Share Document