Factors Affecting Seed Germination of Perennial Wall Rocket (Diplotaxis tenuifolia) in Southern Australia

Weed Science ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 481-485 ◽  
Author(s):  
Samuel G. L. Kleemann ◽  
Bhagirath S. Chauhan ◽  
Gurjeet S. Gill

Germination response of perennial wall rocket to temperature, light, osmotic potential, and depth of burial emergence was evaluated under controlled environmental conditions. The effect of seed burial depth on seedling recruitment in the field was also investigated at Roseworthy, South Australia. Under optimal conditions (30 C, light/dark) germination of perennial wall rocket was rapid, with 90% of seeds germinating within 48 h of imbibition. Germination was reduced (20%) at lower, suboptimal temperatures (10 to 20 C) when seeds of perennial wall rocket were exposed to light. Germination declined with increasing osmotic potential and was completely inhibited at osmotic potentials of −1.5 MPa. Perennial wall rocket emergence was greatest from seeds placed on the soil surface, but some seedlings (< 10%) emerged from a depth of 0.5 to 2 cm. Under both field and growth-cabinet conditions, the greatest seedling emergence of perennial wall rocket occurred from seed present on the soil surface; however, the level of absolute recruitment from the seed bank was much lower (< 5%). Information gained from this study will further improve our understanding of the germination behavior of perennial wall rocket and contribute to developing sustainable strategies for its control.

Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Ning Zhao ◽  
Qi Li ◽  
Wenlei Guo ◽  
Lele Zhang ◽  
Lu’an Ge ◽  
...  

Shortawn foxtail is an invasive grass weed infesting winter wheat and canola production in China. A better understanding of the germination ecology of shortawn foxtail would help to develop better control strategies for this weed. Experiments were conducted under laboratory conditions to evaluate the effects of various abiotic factors, including temperature, light, pH, osmotic stress, salt concentration, and planting depth, on seed germination and seedling emergence of shortawn foxtail. The results showed that the seed germination rate was greater than 90% over a wide range of constant (5 to 25C) and alternating (15/5 to 35/25C) temperatures. Maximum germination occurred at 20C or 25/15C, and no germination occurred at 35C. Light did not appear to have any effect on seed germination. Shortawn foxtail germination was 27% to 99% over a pH range of 4 to 10, and higher germination was obtained at alkaline pH values ranging from 7 to 10. Seed germination was sensitive to osmotic potential and completely inhibited at an osmotic potential of −0.6 MPa, but it was tolerant to salinity: germination even occurred at 200 mM NaCl (5%). Seedling emergence was highest (98%) when seeds were placed on the soil surface but declined with the increasing burial depth. No seedlings emerged when seeds were buried 6-cm deep. Deep tillage could be an effective measure to limit seed germination from increased burial depth. The results of this study will lead to a better understanding of the requirements for shortawn foxtail germination and emergence and will provide information that could contribute to its control.


2006 ◽  
Vol 20 (2) ◽  
pp. 438-444 ◽  
Author(s):  
Husrev Mennan ◽  
Bernard H. Zandstra

Experiments were conducted to investigate the effects of depth and duration of burial on seasonal germination, primary and secondary dormancy, viability, and seedling emergence of ivyleaf speedwell (Veronica hederifoliaL.) seeds. The seeds were buried at 0, 5, 10, or 20 cm and retrieved from the field at monthly intervals. The exhumed seeds were germinated at 5 C. In the second experiment, seeds were stored in the laboratory after harvest and tested for germination at monthly intervals. In each experiment, nongerminated seeds were treated with triphenyltetrazolium chloride at monthly intervals to test their viability. The effects of stratification and burial depth on seedling emergence were observed for 1 yr. The seeds exhumed from the soil were dormant at the beginning of the experiment and exhibited dormancy/nondormancy/conditional dormancy cycling throughout the experiment. Depth of burial and time affected seed germination. Seeds retrieved from the soil surface germinated well initially, but germination decreased as depth of burial increased. In the dry storage experiment, seeds had a high level of primary dormancy, and viability decreased over time. Seedling emergence decreased when depth of burial increased. Seedlings emerged nonuniformly throughout the year and demonstrated typical winter annual characteristics.


Weed Science ◽  
2006 ◽  
Vol 54 (5) ◽  
pp. 854-860 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
Gurjeet Gill ◽  
Christopher Preston

Annual sowthistle has become more abundant under no-till systems in southern Australia. Increased knowledge of germination biology of annual sowthistle would facilitate development of effective weed control programs. The effects of environmental factors on germination and emergence of annual sowthistle seeds were examined in laboratory and field experiments. Seeds of annual sowthistle were able to germinate over a broad range of temperatures (25/15, 20/12, and 15/9 C day/night temperatures). Seed germination was favored by light; however, some germination occurred in the dark as well. Greater than 90% of seeds germinated at a low level of salinity (40 mM NaCl), and some seeds germinated even at 160 mM NaCl (7.5%). Germination decreased from 95% to 11% as osmotic potential increased from 0 to −0.6 MPa and was completely inhibited at osmotic potential greater than −0.6 MPa. Seed germination was greater than 90% over a pH range of 5 to 8, but declined to 77% at pH 10. Seedling emergence was the greatest (77%) for seeds present on the soil surface but declined with depth, and no seedlings emerged from a soil depth of 5 cm. In another experiment in which seeds were after-ripened at different depths in a field, seed decay was greater on the soil surface than at 2 or 5 cm depth. At the end of the growing season, there was a much greater persistence of buried seed (32 to 42%) than seeds present on the soil surface (8%). Greater persistence of buried seed could be due to dormancy enforced by dark in this species.


Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
David E. Johnson

Synedrella is a tropical annual plant species of the family Asteraceae that is widely distributed in many crops in nearly 50 countries. Experiments were conducted to determine the influence of various environmental factors on seed germination and seedling emergence of synedrella. Germination response was greater at 30/20 C and 35/25 C than at 25/15 C fluctuating day/night temperatures. Light stimulated germination; however, a small proportion of after-ripened seeds germinated in the dark. Seedling emergence was greatest (96%) for seeds placed on the soil surface but declined with increased seed burial depth. No seedlings emerged from a depth of 4 cm. Seedling emergence and seedling dry matter declined with the addition of crop residue to the soil surface; however, higher quantities of residue than those normally found in low-yield systems were required to result in substantial reductions in emergence. Seed germination was tolerant of moderate salt concentrations (40 to 100 mM sodium chloride) and a broad range of pH (4 to 10) but was sensitive to low osmotic potentials (< −0.8 MPa). The information gained from this study could help predict the invasion potential of this species and could lead to improved management strategies.


Weed Science ◽  
2004 ◽  
Vol 52 (6) ◽  
pp. 989-995 ◽  
Author(s):  
Clifford H. Koger ◽  
Krishna N. Reddy ◽  
Daniel H. Poston

Field, laboratory, and greenhouse experiments were conducted to determine the seed production potential and effect of environmental factors on germination, emergence, and survival of texasweed. Texasweed produced an average of 893 seed per plant, and 90% were viable. Seed exhibited dormancy, and prechilling did not release dormancy. Percent germination ranged from 56% for seed subjected to no prechilling to 1% for seed prechilled at 5 C for 140 d. Seed remained viable during extended prechilling conditions, with 80% of seed viable after 140 d of prechilling. Texasweed seed germinated over a range of 20 to 40 C, with optimum germination (54%) occurring with a fluctuating 40/30 C temperature regime. Seed germinated with fluctuating 12-h light/dark and constant dark conditions. Texasweed seed germinated over a broad range of pH, osmotic potential, and salt concentrations. Seed germination was 31 to 62% over a pH range from 4 to 10. Germination of texasweed ranged from 9 to 56% as osmotic potential decreased from − 0.8 MPa to 0 (distilled water). Germination was greater than 52% at less than 40 mM NaCl concentrations and lowest (27%) at 160 mM NaCl. Texasweed seedlings emerged from soil depths as deep as 7.5 cm (7% emergence), but emergence was > 67% for seed placed on the soil surface or at a 1-cm depth. Texasweed seed did not germinate under saturated or flooded conditions, but seed survived flooding and germinated (23 to 25%) after flood removal. Texasweed seedlings 2.5 to 15 cm tall were not affected by emersion in 10-cm-deep flood for up to 14 d. These results suggest that texasweed seed is capable of germinating and surviving in a variety of climatic and edaphic conditions, and that flooding is not a viable management option for emerged plants of texasweed.


Weed Science ◽  
2018 ◽  
Vol 66 (4) ◽  
pp. 485-493 ◽  
Author(s):  
Samuel G. L. Kleemann ◽  
Gurjeet Gill

AbstractWinged sea lavender [Limonium lobatum(L.f. Chaz)] is emerging as a significant weed of field crops in southern Australia. Several environmental factors affecting germination and seedling recruitment were examined to provide a better understanding of the behavior of its seedbank. At maturity, weed seeds were dormant for a period of around 2 mo, but dormancy was easily broken with scarification or by pretreatment with 564 mM NaOCL for 30 min, which confirms the role of the seed coat in regulating seed germination. Exposure to light significantly increased germination. Seeds were able to germinate over a broad range of temperatures (5 to 30 C), with maximum germination (~92%) at temperatures between 10 and 30 C. At 20 to 25 C, 50% germination was reached within 1.3 to 2 d, and the predicted base temperature for germination of the two populations ranged from 1.4 to 3.9 C. The NaCl concentration required to inhibit germination by 50% was 230 mM, with some seeds capable of germination at salinity levels as high as 480 mM. These results indicated greater tolerance to salinity inL. lobatumthan many other Australian agricultural weed species previously investigated. Seedling emergence was the highest (51% to 57%) for seeds present on the soil surface and was significantly reduced by burial at 1 cm (≤11%) and 2 cm (≤2%), with no emergence at 5 cm. Under field conditions, seedling recruitment varied considerably among the three experimental sites. The level of seedling recruitment was negatively associated with rainfall received at the site, organic carbon (OC) level, and microbial biomass of the soil. Rapid decay of weed seeds in high-OC soils appears to be an important determinant of seedling recruitment in this species and could explain greater occurrence ofL. lobatumon soils with low OC and low microbial activity in low-rainfall areas of southern Australia. Furthermore, many such soils in southern Australia are affected by salinity, which would enableL. lobatumto be more competitive with crops and other weeds present at a site.


Weed Science ◽  
2020 ◽  
Vol 68 (5) ◽  
pp. 503-509 ◽  
Author(s):  
Jialin Yu ◽  
Shaun M. Sharpe ◽  
Nathan S. Boyd

AbstractExperiments were conducted to determine the effect of various environmental factors and burial depth on germination and seedling emergence of common beggar’s-tick [Bidens alba (L.) DC.] seeds at two different stages of afterripening. Mature B. alba seeds were stored at 4 C for 3 to 5 mo (new seed lot) and 13 to 15 mo (old seed lot) until experiment initiation. Germination exponentially decreased with increasing moisture stress. Germination rate decreased from 87 ± 2.9% to 13 ± 6.1% as osmotic potential decreased from 0 to −0.5 MPa and was completely inhibited at osmotic potentials below −0.83 MPa. A large portion of the new seeds tested positively photoblastic, but seeds that had afterripened for 1 additional year were partially desensitized to the light requirement. New and old seeds still germinated to a greater percentage in the presence of light than under continuous dark at temperatures ranging from 15 to 35 C. Both new and old seeds germinated over a range of temperatures from 5 to 35 C, but the optimum temperatures for germination was 15 to 30 C in the presence of light. Regardless of seed lot, seedling emergence was the greatest when seeds were sown at the soil surface. Seedling emergence was abruptly reduced when burial depth was 1 cm or greater. Based on these results, we conclude that shallow cultivation could effectively suppress this population of B. alba from emerging when incorporated into an integrated control strategy. The information obtained in this research identifies some important factors that facilitate the widespread presence of B. alba in Florida and may contribute to weed management programs.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 634-641 ◽  
Author(s):  
Hongchun Wang ◽  
Bing Zhang ◽  
Liyao Dong ◽  
Yuanlai Lou

The influence of temperature, light, solution pH, water stress, salt stress, and burial depth on seed germination and seedling emergence of catchweed bedstraw and the sensitivity of that weed to commonly available herbicides in China were studied in laboratory and greenhouse. Germination occurred at day/night temperatures from 5/0 C to 30/25 C, with optimum germination at 15/10 C. Catchweed bedstraw germinated equally well under a 12-h photoperiod and continuous darkness; however, a 24-h photoperiod inhibited seed germination. Catchweed bedstraw seed is moderately sensitive to osmotic potential and salt stress, with 15 and 3% germination rates at an osmotic potential of −0.5 Mpa and salinity level of 120 mM, respectively. Maximum seed germination was observed in near neutral pH; germination was greater than 80% over a broad pH range from 5 to 8. Seedling emergence of the seeds buried at a depth of 1 cm was higher (74%) than those placed on the soil surface (20%), but declined with burial depth increasing. Few (10%) seedlings emerged when seeds were placed at a depth of 5 cm. Bensulfuron-methyl, and ethametsulfuron-methyl applied PRE and tribenuron-methyl, fluroxypyr, and florasulam applied POST can be used to provide greater than 80% control of catchweed bedstraw. The results of this study have contributed to more complete understanding of the germination and emergence of catchweed bedstraw.


Weed Science ◽  
2008 ◽  
Vol 56 (4) ◽  
pp. 529-533 ◽  
Author(s):  
Na Rao ◽  
Liyao Dong ◽  
Jun Li ◽  
Hongjun Zhang

The influence of environmental factors on seed germination and seedling emergence of American sloughgrass was studied in laboratory and greenhouse conditions. The optimum temperature for seed germination was 10 C and light was not necessary. Seed germination was sensitive to osmotic potential and completely inhibited at an osmotic potential of −0.6 MPa, but it was quite tolerant to salinity: germination occurred even at 160 mM NaCl (36%). More than 80% of seeds germinated at pH values ranging between 4 and 10. Seedling emergence was highest when seeds were placed on the soil surface (91%) but declined with burial depth. Few (3%) seedlings emerged when seeds were planted at a depth of 5 cm. Information gained in this study will lead to a better understanding of the requirements for American sloughgrass germination and emergence.


Weed Science ◽  
2011 ◽  
Vol 59 (4) ◽  
pp. 527-532 ◽  
Author(s):  
Courtney A. Stokes ◽  
Gregory E. MacDonald ◽  
Carrie Reinhardt Adams ◽  
Kenneth A. Langeland ◽  
Deborah L. Miller

Natalgrass is an invasive species that has become increasingly problematic in natural areas in Florida and other subtropical and tropical regions around the world. Natalgrass is a prolific seed producer, but little information is available regarding its seed biology and ecology. Research was conducted to determine levels of seed dormancy and to examine the effects of light, temperature, pH, water stress, and depth of burial on natalgrass seed germination. In addition, seed persistence under field conditions was examined both on the soil surface and while buried. Seeds appeared to undergo afterripening. Seed germination was not light dependent and occurred from 15 to 35 C, with optimum germination occurring at 20 to 35 C. Germination occurred at pH levels of 6 and 8 and was affected by water stress; no germination was observed at osmotic potentials less than −0.2 MPa. Seeds emerged from depths of at least 5 cm. Under field conditions, germination was reduced after burial; however, burial lengths of 3 to 15 mo did not result in differences in germination levels. Seedling numbers from seed deposits on the soil surface were greatly reduced after 1 mo, and no seedling emergence was observed after 4 mo.


Sign in / Sign up

Export Citation Format

Share Document