scholarly journals (416) Weed Management in Organic Sweet Corn

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1071E-1072
Author(s):  
Anthony Silvernail

Organic weed control in direct seeded vegetables depends on management strategies that control weed germination or growth which depletes the weed seedbank. In 2004, a randomized complete-block experiment conducted on land transitioning to organic production examined the effects of tillage and control treatments on weed pressure in sweet corn [Zeamays (L.) cv. Silver Queen]. The two tillage treatments consisted of conventional (moldboard and rototill) and spader tillage. Weed control treatments included a weed free control, a spring-tine weeder, rolling cultivator, row flamer, stale seedbed, and corn gluten meal. In August, the weed infestation was primarily goose grass [Eleusineindica (L.) Gaertn.], crab grass [Digitariasanguinalis (L.) Scop.], giant foxtail (Setariafaberi Herrm.), and smooth pigweed [Amaranthushybridus (L.)] species. Dried weed weights indicated that smooth pigweed constituted about 80% of the total weed biomass in all but the control and flamer treatments. Plots managed with the spring-tine weeder or corn gluten had twice the weed biomass of those managed with the rolling cultivator and flamer. The rolling cultivator and control treatments produced equivalent husked corn yields (6.9 t·ha-1); yields were reduced by the other weed control methods. At 5.4 t·ha-1, yields in the flamer treatment were the lowest among all weed control methods. The flamer suppressed both weeds and the crop, which may preclude its utility for sweet corn production. Results demonstrated that the rolling cultivator provided the best weed control without negatively affecting potential yields.

Weed Science ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 403-409 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
Seth B. Abugho

Crop residues acting as mulches can influence weed seedling emergence and weed biomass. A field study was conducted to evaluate the effect of rice residue amounts (0, 3, and 6 t ha−1) on seedling emergence of eight weed species in zero-till dry-seeded rice. The highest seedling emergence of spiny amaranth, southern crabgrass, crowfootgrass, junglerice, eclipta, goosegrass, and Chinese sprangletop was observed in the absence of residue. Seedling emergence of these weeds declined with increasing residue amounts; however, the greatest and most substantial reductions in emergence occurred with 6 t ha−1of residue. The presence of residue also resulted in less weed biomass than with the no-residue treatment. The emergence and biomass of threelobe morningglory seedlings, however, were not influenced by residue amounts. The use of residue also increased the time taken to reach 50% of maximum emergence for some species, for example, spiny amaranth and Chinese sprangletop. The results of our study suggest that the use of residue at high rates can help suppress seedling emergence and growth of many weeds. However, there is a need to integrate other weed management strategies with residue retention to achieve season-long weed control.


2020 ◽  
Vol 27 (2) ◽  
pp. 343-347
Author(s):  
Mohammad Ilyas

Experiments were conducted at the farm of the University of Agriculture Peshawar in 2012 and 2013 to evaluate the effect of different weed control methods in bitter gourd. The treatments comprised of four mulches (Rumex crispus, Silybum marianum, news papers, and saw-dust), a herbicide i.e. Stomp 330 EC (pendimethalin) applied as pre-emergence, a hand weeding and a control treatment (weedy check). Data were collected on weed biomass, number of plants ha-1 and fruit weight. The parameters were significantly affected by the applied treatments during both the years. Weed biomass in 2012 and 2013 was the highest (2971 and 3595 kg ha-1, respectively in the weedy check treatments and lowest in hand weeded plots (68 and 83 kg ha-1) in 2012 and 2013, respectively. Moreover the effect of the mulching treatments and the herbicide treatment were statistically at par with each other and different from the weedy check. The highest number of plants ha-1 (9773 and 8077) and fruit weight plant-1 (756 and 657 g) were recorded in the hand weeded treatments in 2012 and 2013, respectively. Hand weeding was followed by the treatment of Stomp 330 EC with the respective values in the two years as 8834 and 7301 plants ha-1, and 667 and 580 g plant-1 in 2012 and 2013, respectively. Moreover, the performance of the mulching treatments was also significantly more effective than the weedy check plots. Mulches of S. marianum and R. crispus reduced the weed biomass to 1072 and 1615 kg in 2012 and 1297 and 1954 kg in 2013 as compared to the weedy control with weed biomass of 2971 and 3595 kg ha-1 in 2012 and 2013, respectively. The respective no. of plants ha-1 for the mulches of S. marianum and R. crispus were 8548 and 8489 in 2012 and 7065 and 7016 in 2013 whereas and the fruit weight plant-1 was 435 and 396 in 2012 and 378 and 344 g in 2013. Keeping in view the good performance of weed biomass as mulches, the cost of production and the environmental safety, the hand weeding and herbicide use cannot be preferred alone for use as weed management tools. Therefore, the herbicide use and hand weeding should be used only on casual basis or in emergency; and the mulching methods should be adopted in the long run as mulching method is not only good for weed control but also for maintaining the soil fertility, moisture conservation, and environmental safety.


2012 ◽  
Vol 26 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Anil Shrestha ◽  
Marcelo Moretti ◽  
Nathalia Mourad

Sustainable weed management strategies are needed for organic orchard systems. A study was conducted in an almond orchard in Fresno, CA from 2009 to 2011. Treatment comparisons included steam, flame, and broad applications of either lemongrass oil or D-limonene. An untreated control was also included. The experimental design was a randomized complete block with four replications. Weekly evaluations on percent weed control were taken and weed biomass was sampled 4 to 8 wk after treatment (WAT). Weed control and biomass differed between seasons but, in general, steam and flame provided as much as 95% control 1 WAT. However, the effects lasted only 3 to 4 wk as new weeds emerged or the treated weeds overcame the suppressive effects of the thermal treatments. Weed biomass was 95% lower in the steam- and flame-treated plots compared with the untreated plots in summer. Both steam and flame were more effective on certain erect-growing broad-leaved weed species than on prostrate-growing weeds and grasses. Lemongrass oil provided very little weed control. However, D-limonene provided up to 95% weed control 1 WAT and in one experiment 53% control was observed up to 5 WAT. This herbicide also resulted in lower weed biomass than the untreated and the thermal-treated plots. Monthly applications of steam or flame or applications of D-limonene every 5 to 6 wk may have to be made to adequately suppress weeds in organic almond orchards. Cost estimates of propane use were $41 to 56 ha−1 and $26 ha−1 for the steam and flame treatments, respectively. The cost of D-limonene was estimated as $275 ha−1. To optimize weed control and costs, these tools may need to be used in combination rather than by themselves.


2020 ◽  
Vol 13 (6) ◽  
pp. 16
Author(s):  
R. C. A. Araújo ◽  
A. M. C. Marinho ◽  
R. G. S. Sobrinho ◽  
V. H. C. Sousa ◽  
L. C. Souza ◽  
...  

Sugarcane is a very important crop in the history of Brazil, since the period of colonization. Among the factors that affect its yield in commercial areas, weeds could be highlighted. Appropriate management strategies are essential to mitigate this interference and increase crop productivity. In this sense, the aim was to evaluate the effect of different control methods on weed management, in the pre-emergence of two varieties, of cane-plant. The experiment was conducted at  Primavera Farm, Itambé (PE), in randomized blocks, in a 2x5 factorial scheme, with 4 replications. The first factor represented two varieties of sugarcane (RB867515 and RB92579) and the second five weed control methods (weed control, absolute control, s-metalochlor + tebuthiuron, sulfentrazone and oxyfluorfen). The number of tillers per linear meter, degree of phytotoxicity and weed control were evaluated. At the end of the research, the RB92579 variety can be used as an alternative for the weed control because it presents rapid sprouting and initial development and more aggressive tillering than RB867515, under Itambé (PE) soil conditions. It is recommended the use of sulfentrazone at the dose of 1.8 L.ha-1.p.c, for better residual effect and "sufficient" control of weeds in the stage of establishment of the culture.


2021 ◽  
pp. 1-10
Author(s):  
Thierry E. Besançon ◽  
Baylee L. Carr ◽  
Albert Ayeni

Tigernut (Cyperus esculentus var. sativus) is a type of sedge that is quickly becoming popular as a superfood. As demand for tigernut continues to increase, more information is needed to develop weed management strategies for the crop to maximize tuber yield and quality. However, no herbicide is currently labeled for use with tigernut. Experimental trials were conducted in 2017 and 2018 to assess crop safety and control of economically important weeds with preemergence herbicides for transplanted ‘NG3’ and ‘OG’ tigernut. Oxyfluorfen applied alone or mixed with pendimethalin provided excellent control (>85%) of smooth pigweed (Amaranthus hybridus), carpetweed (Mollugo verticillata), and large crabgrass (Digitaria sanguinalis), and it did not cause any tigernut injury, stunting, or yield reduction compared with the weed-free control. However, none of the treatments controlled hairy galinsoga (Galinsoga quadriradiata) satisfactorily 2 months after herbicide application. Bensulide alone or associated with oxyfluorfen caused 14% to 25% stunting of tigernut. Bensulide alone only provided short-term control of broadleaf weeds. Increased weed competition and tigernut phytotoxicity associated with bensulide resulted in a 39% reduction in tuber yield compared with oxyfluorfen alone. Finally, S-metolachlor caused up to 78% stunting and a 68% reduction in vegetative tigernut biomass (on average) compared with the weed-free control. Tuber yield was reduced 55% to 97% after S-metolachlor was applied at transplanting. Oxyfluorfen would provide effective weed control up to 8 weeks after treatment in fields where hairy galinsoga is not a weed of concern and fulfill the requirement of a weed-free period without affecting tuber yield of quality.


Author(s):  
Katja Koehler-Cole ◽  
Christopher A. Proctor ◽  
Roger W. Elmore ◽  
David A. Wedin

Abstract Replacing tillage with cover crops (CC) for weed management in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems with mechanical weed control has many soil health benefits but in the western Corn Belt, CC establishment after harvest is hampered by cold temperatures, limited labor and few compatible CC species. Spring-planted CC may be an alternative, but information is lacking on suitable CC species. Our objective was to evaluate four spring-planted CC with respect to biomass production and weed suppression, concurrent with CC growth and post-termination. Cover crop species tested were oat (Avena sativa L.), barley (Hordeum vulgare L.), brown mustard [Brassica juncea (L.) Czern.] and yellow mustard (Brassica hirta Moench). They were compared to no-CC treatments that were either tilled pre- and post-planting of soybean (no-CC tilled) or not tilled at all (no-CC weedy). CC were planted in late March to early April, terminated 52–59 days later using an undercutter, and soybean was planted within a week. The experiment had a randomized complete block design with four replications and was repeated for 3 years. Mustards and small grains produced similar amounts of biomass (1.54 Mg ha−1) but mustard biomass production was more consistent (0.85–2.72 Mg ha−1) than that of the small grains (0.35–3.81 Mg ha−1). Relative to the no-CC weedy treatment, mustards suppressed concurrent weed biomass in two out of 3 years, by 31–97%, and small grains suppressed concurrent weed biomass in only 1 year, by 98%. Six weeks after soybean planting, small grains suppressed weed biomass in one out of 3 years, by 79% relative to the no-CC weedy treatment, but mustards did not provide significant weed suppression. The no-CC tilled treatment suppressed weeds each year relative to the no-CC weedy treatment, on average 87%. The ineffective weed control by CC reduced soybean biomass by about 50% six weeks after planting. While spring-planted CC have the potential for pre-plant weed control, they do not provide adequate early season weed suppression for soybean.


2020 ◽  
Author(s):  
Saraswathi Shanmugam ◽  
Eduardo Assunção ◽  
Ricardo Mesquita ◽  
André Veiros ◽  
Pedro D. Gaspar

A weed plant can be described as a plant that is unwanted at a specific location at a given time. Farmers have fought against the weed populations for as long as land has been used for food production. In conventional agriculture this weed control contributes a considerable amount to the overall cost of the produce. Automatic weed detection is one of the viable solutions for efficient reduction or exclusion of chemicals in crop production. Research studies have been focusing and combining modern approaches and proposed techniques which automatically analyze and evaluate segmented weed images. This study discusses and compares the weed control methods and gives special attention in describing the current research in automating the weed detection and control. Keywords: Detection, Weed, Agriculture 4.0, Computational vision, Robotics


2017 ◽  
Vol 9 (1) ◽  
pp. 539-543
Author(s):  
Aradhana Bali ◽  
B. R. Bazaya ◽  
Sandeep Rawal

A field experiment was conducted during kharif season of 2011 at Research Farm, Sher-e-Kashmir University of Agricultural Sciences and Technology, Chatha, Jammu to evaluate the effect of weed management prac-tices on yield and nutrient uptake of soybean utilizing different resource management strategies. The lowest weed density and dry matter of weeds was recorded with hand weeding at 15 and 35 days after sowing (DAS) which was equally effective as imazethapyr @ 75 g ha -1 (PoE) fb hoeing at 35 DAS and quizalofop-ethyl @ 40 g ha-1 (PoE) fb hoeing at 35 DAS. All weed control treatments had significant effect on yield and nutrient up-take of soybean. Among the different weed control treatments, lowest N, P and K uptake by weeds were recorded in hand-weeding (15 and 35 DAS) which was statistically at par with imazethapyr @ 75 g ha -1 fb hoeing at 35 DAS. The maximum uptake by seed and straw were recorded in weed free which was statistically at par with twice hand weeding at 15 and 35 DAS, imazethapyr @ 75 g ha-1 fb hoeing at 35 DAS and quizalofop-ethyl @ 40 g ha-1 fb hoeing at 35 DAS. The highest seed and straw yield of soybean was harvested with hand-weeding (15 and 35 DAS) followed by imazethapyr @ 75 g ha -1 fb hoeing at 35 DAS. For the first time, soybean crop has been introduced in Jammu region for research purpose. Weed management varies with agro-climatic conditions. The study would be helpful to understand weed menace in this particular climatic condition of Jammu and to manage them combinedly and efficiently.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


Sign in / Sign up

Export Citation Format

Share Document