Yellow Nutsedge Interference in Polyethylene-Mulched Bell Pepper as Influenced by Turnip Soil Amendment

2011 ◽  
Vol 25 (3) ◽  
pp. 466-472 ◽  
Author(s):  
Sanjeev K. Bangarwa ◽  
Jason K. Norsworthy ◽  
John D. Mattice ◽  
Edward E. Gbur

Methyl bromide has been widely used as a broad-spectrum fumigant for weed control in polyethylene-mulched bell pepper. However, because of environmental hazards, the phase-out of methyl bromide requires development of alternative weed management strategies. Brassicaceae plants produce glucosinolates which are hydrolyzed to toxic isothiocyanates following tissue decomposition, and therefore can be used as a cultural strategy. Field experiments were conducted in 2007 and 2009 to study the influence of soil amendment (‘Seventop’ turnip cover crop vs. fallow) and the effect of initially planted yellow nutsedge tuber density (0, 50, and 100 tubers m−2) on the interference of yellow nutsedge in raised-bed polyethylene-mulched bell pepper. Total glucosinolate production by the turnip cover crop was 12,635 and 22,845 µmol m−2in 2007 and 2009, respectively, and was mainly contributed by shoots. In general, soil amendment with the turnip cover crop was neither effective in reducing yellow nutsedge growth and tuber production nor in improving bell pepper growth and yield compared to fallow plots at any initial tuber density. Averaged over cover crops, increasing initial tuber density from 50 to 100 tubers m−2increased yellow nutsedge shoot density, shoot dry weight, and tuber production ≥ 1.4 times. However, increased tuber density had minimal impact on yellow nutsedge height and canopy width. Compared to weed-free plots, interference of yellow nutsedge reduced bell pepper dry weight and marketable yield ≥ 42 and ≥ 47%, respectively. However, bell pepper dry weight and yield reduction from 50 and 100 tubers m−2were not different. Light was the major resource for which yellow nutsedge competed with bell pepper. Yellow nutsedge shoots grown from initially planted 50 and 100 tubers m−2caused up to 48 and 67% light interception in bell pepper, respectively. It is concluded that yellow nutsedge interference from initial densities of 50 and 100 tubers m−2are equally effective in reducing bell pepper yield and that soil biofumigation with turnip is not a viable management option for yellow nutsedge at these densities.

2012 ◽  
Vol 26 (2) ◽  
pp. 364-370 ◽  
Author(s):  
Sanjeev K. Bangarwa ◽  
Jason K. Norsworthy ◽  
Edward E. Gbur

Yellow nutsedge is a problematic weed in polyethylene-mulched tomato production. Soil fumigation with methyl bromide is the most effective method of controlling nutsedges, but because of ozone depletion, the phase-out of methyl bromide has complicated nutsedge control in polyethylene-mulched tomato and other vegetable crops. Plants belonging to the Brassicaceae family produce glucosinolates, which upon tissue decomposition generate biocidal isothiocyanates and therefore can be used as a biological alternative for yellow nutsedge control. Field experiments were conducted in 2007 and 2009 to study the influence of soil amendment with ‘Seventop’ turnip cover crop on the interference of yellow nutsedge planted at 0, 50, and 100 tubers m−2in raised-bed polyethylene-mulched tomato production. There was no advantage of soil amendment with Seventop on reducing yellow nutsedge interference in polyethylene-mulched tomato. Regardless of soil amendment, increasing initial tuber density from 50 to 100 tubers m−2increased yellow nutsedge shoot density, shoot dry weight, and tuber production at least 1.7, 1.6, and 1.6 times, respectively. As a result, tomato canopy width, shoot dry weight, and marketable yield decreased with increasing initial tuber densities. However, increased tuber density had minimal impact on tomato height. Relative to weed-free plots, interference of yellow nutsedge at 50 and 100 tubers m−2reduced marketable yield of tomato up to 32 and 49%, respectively. Shading of the middle and lower portion of tomato plants by yellow nutsedge shoots could be the major factor for reducing tomato growth and yield in weedy plots. It is concluded that soil amendment with Seventop turnip is not a viable option for reducing yellow nutsedge interference at 50 and 100 tuber m−2in polyethylene-mulched tomato.


2021 ◽  
Vol 4 (2) ◽  
pp. 1021-1033
Author(s):  
Nguyen Thi Loan ◽  
Tran Thi My Can

To study the effects of cover methods and nitrogen (N) levels on the growth and yield components of tomato Cv. Pear F1, field experiments with a 4x3 factorial design were conducted in the 2019 spring and winter seasons using a randomized complete block design with three replications. The cover methods included four treatments: bare soil (BS), black plastic mulch (BPM), transparent polypropylene row cover (RC), and a combination of BPM and RC (BPMRC) with the RC removed approximately 30 days after transplanting. Nitrogen (N) was applied at three levels (150, 180, and 210 kg N ha-1). Using BPM and RC generally led to an increased air temperature, air humidity, soil moisture, and soil temperature compared to the BS treatment. Higher N rates (180 and 210 kg N ha-1) did not result  in different tomato fruit sizes and fruit weights but positively increased fruit yield and quality (Brix values and fruit dry weight) as compared to the 150 kg N ha-1 addition. The cover methods positively affected the yield components and fruit yield of tomato as well as the fruit characteristics compared to the BS treatment. Using cover materials (BPM and RC) combined with a higher N application significantly increased the yield attributes and fruit yield. The highest fruit yield was achieved under the mulching treatment by black plastic (BPM treatment) combined with a 210 kg N ha-1 application, resulting in 50.90 tons ha-1 in the spring and 58.27 tons ha-1 in the winter.


Weed Science ◽  
1983 ◽  
Vol 31 (4) ◽  
pp. 572-575 ◽  
Author(s):  
Zain Ghafar ◽  
Alan K. Watson

Major differences in above- ground biomass and tuber production of yellow nutsedge (Cyperus esculentusL. # CYPES) were not observed when corn (Zea maysL. “CO-OP S265”) was seeded on different dates (1st, 2nd, 3rd and 4th week of May; and 1st week of June). The final seedbed was prepared just prior to each seeding date and this cultivation stimulated dormant tubers to sprout. As a result, a large population of yellow nutsedge emerged with the corn at all seeding dates. Because fertilizer was banded near the corn row, yellow nutsedge biomass, tuber dry weight and number of tubers were higher within corn rows than between rows. Tuber size was affected by seeding date and shifted toward smaller tubers within corn rows and larger tubers between the rows as the corn was sown late. The optimum seeding date of corn was in the 3rd week of May when the highest corn yield was obtained and yellow nutsedge growth was generally reduced.


Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 364-370 ◽  
Author(s):  
Ronald C. Cordes ◽  
Thomas T. Bauman

Detrimental effects on growth and yield of soybeans [Glycine max(L.) Merr. ‘Amsoy 77′] from density and duration of competition by ivyleaf morningglory [Ipomea hederacea(L.) Jacq. ♯3IPOHE] was evaluated in 1981 and 1982 near West Lafayette, IN. Ivyleaf morningglory was planted at densities of 1 plant per 90, 60, 30, and 15 cm of row in 1981 and 1 plant per 60, 30, 15, and 7.5 cm of row in 1982. Each density of ivyleaf morningglory competed for 22 to 46 days after emergence and the full season in 1981, and for 29 to 60 days after emergence and the full season in 1982. The best indicators of competition effects were leaf area index, plant dry weight, and yield of soybeans. Ivyleaf morningglory was more competitive during the reproductive stage of soybean growth. Photosynthetic irradiance and soil moisture measurements indicated that ivyleaf morningglory does not effectively compete for light or soil moisture. All densities of ivyleaf morningglory could compete with soybeans for 46 and 60 days after emergence in 1981 and 1982, respectively, without reducing soybean yield. Full-season competition from densities of 1 ivyleaf morningglory plant per 15 cm of row significantly reduced soybean yield by 36% in 1981 and 13% in 1982. The magnitude of soybean growth and yield reduction caused by a given density of ivyleaf morningglory was greater when warm, early season temperatures favored rapid weed development.


2004 ◽  
Vol 18 (2) ◽  
pp. 341-345 ◽  
Author(s):  
James P. Gilreath ◽  
Bielinski M. Santos

Field trials were conducted to compare the effect of various soil fumigants along with in-bed pebulate and row-middle metribuzin applications on purple nutsedge control and on tomato and bell pepper growth and yield. Treatments consisted of combinations of soil fumigants, pebulate, and metribuzin. Fumigants levels were (1) untreated control, (2) methyl bromide (MBr) + chloropicrin (Pic) (67 + 33%, respectively), (3) Pic, (4) metham, (5) dazomet, and (6) 1,3-dichloropropene (1,3-D) + Pic (83 + 17%, respectively). Pebulate levels were either applied in-bed or not applied. Row middles were either sprayed with metribuzin or untreated. In both crops, purple nutsedge populations were independently influenced by fumigants and pebulate applications, with the highest number of purple nutsedge plants in the untreated control. The addition of pebulate reduced purple nutsedge populations in all treatments. In tomato trials, the yield was affected by fumigants, with the highest losses (53 and 50% reductions in fruit number and weight) observed in the nonfumigated control. In pepper trials, fruit number and weight were individually influenced by fumigants and metribuzin sprayings. Application of metribuzin to row middles increased yields 10% relative to nontreated plots.


HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 289-293 ◽  
Author(s):  
Michael J. Adler ◽  
Carlene A. Chase

The phytotoxicity of aqueous foliar extracts and ground dried residues of sunn hemp (Crotalaria juncea L.), cowpea [Vigna unguiculata (L.) Walp. cv. Iron Clay], and velvetbean [Mucuna deeringiana (Bort) Merr.] to crop and weed germination and growth was evaluated to compare the allelopathic potential of the cover crops. By 14 days after treatment (DAT), goosegrass [Eleusine indica (L.) Gaertn.] germination with 5% aqueous extracts of all cover crops (w/v fresh weight basis) was similar and greater than 75% of control. However, with the 10% extracts, goosegrass germination was lowest with cowpea extract, intermediate with velvetbean extract, and highest with sunn hemp extract. Livid amaranth (Amaranthus lividus L.) germination declined to ≈50% with cowpea and sunn hemp extracts and even lower to 22% with velvetbean extract. The suppression of livid amaranth germination was greater with the 10% extracts than the 5% extracts. Bell pepper (Capsicum annuum L.) germination was unaffected by velvetbean extract, inhibited more by the 5% cowpea extract than the 10% extract, and was also sensitive to the 10% sunn hemp extract. All cover crop extracts resulted in an initial delay in tomato (Lycopersicon esculentum Mill.) germination, but by 14 DAT, inhibition of germination was apparent only with cowpea extract. The phytotoxicity of ground dried residues of the three cover crops on germination, plant height, and dry weight of goosegrass, smooth amaranth (A. hybridus L.), bell pepper, and tomato was evaluated in greenhouse studies. Goosegrass germination was inhibited in a similar manner by residues of the three cover crops to 80% or less of control. Smooth amaranth germination, plant height, and dry biomass were more sensitive to sunn hemp residues than to cowpea and velvetbean residues. Bell pepper germination, plant height, and dry weight were greater than 90% of control except for dry weight with cowpea residue, which was only 78% of control. The greatest effect of cover crop residue on tomato occurred with dry weight, because dry weights with cowpea and sunn hemp were only 76% and 69% of control, respectively, and lower than with velvetbean. There was more evidence of cover crop phytotoxicity with the weed species than with the crop species and cowpea extracts and residue affected all species more consistently than those of sunn hemp and velvetbean.


HortScience ◽  
2010 ◽  
Vol 45 (11) ◽  
pp. 1639-1642 ◽  
Author(s):  
Ricardo Goenaga ◽  
A. Graves Gillaspie ◽  
Adolfo Quiles

Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable, and for consumption of its dry beans, which provide 22% to 25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowpea develops severe leaf chlorosis caused by deficiencies of iron (Fe), zinc (Zn), and manganese (Mn) resulting in stunted plant growth and yield reduction. We evaluated in replicated field experiments at St. Croix, U.S. Virgin Islands, and Juana Díaz, Puerto Rico, 24 PIs and two commercial cultivars, some of which have shown some tolerance to alkaline soils in unreplicated, seed regeneration plots of the U.S. cowpea collection. Alkaline soil conditions at St. Croix were too severe resulting in average yield of genotypes at this location being significantly lower and 77% less than that at Juana Díaz. Nevertheless, some genotypes performed well at both locations. For example, PIs 222756, 214354, 163142, 582605, 582840, 255766, 582610, 582614, 582576, 582809, and 349674 yielded in the upper half of the group at both locations. Accession PI 163142 ranked third in grain yield production at both locations and outyielded the iron-chlorosis-resistant controls at St. Croix. These genotypes deserve further attention as potential sources of alkaline soil tolerance.


2001 ◽  
Vol 11 (1) ◽  
pp. 150
Author(s):  
Mary C. Akemo ◽  
Mark A. Bennett ◽  
Emilie E. Regnier

Pure and biculture stands of rye `Wheeler' (Secale cereale L.) and field pea (Pisum sativum L.) were established and killed for mulch in Spring 1996, 1997, and 1998, in Columbus, Ohio. Treatments were five rye to pea proportions, each with a high, medium, and low seeding rate. Their effects on tomato (Lycopersicon esculentum Mill.) growth and yield were compared with those of a weedy check; a tilled, nonweeded check; and a tilled, hand-weeded check. Tomato tissue and soil were sampled for nutrient analysis. Number of leaves, branching, height, leaf area, dry weight, rate of flowering and fruit set, and fruit yield of tomato plants varied directly with the proportion of pea in the cover crop and decreased with reduced cover crop seeding rates. In 1997, yields of tomato were as high as 50 MT·ha-1 in the 1 rye: 3 pea cover crop; yield was poorest in the weedy check (0.02 MT·ha-1 in 1996). Most of the cover-cropped plots produced better yields than did the conventionally weeded check. No consistent relationship between levels of macronutrients in tomato leaf and soil samples and the cover crop treatments was established. Spring-sown rye + pea bicultures (with a higher ratio of pea) have a potential for use in tomato production.


2014 ◽  
Vol 6 (2) ◽  
pp. 755-762
Author(s):  
Amandeep Kaur ◽  
L. K. Dhaliwal

Field experiments were conducted at Punjab Agricultural University, Ludhiana (Punjab) to study the effect of different agronomic aspects of bed planting on growth and yield of rice during Kharif seasons of 2012 and 2013. The 30 days old seedlings of both rice varieties PR-118 (V1) and PR-116 (V2) were transplanted on 15th June (D1), 30th June (D2) and 15th July (D3). The two rice varieties were transplanted under bed planting (M1) and conventional planting (M2) methods respectively. The results showed that growth parameters like number of tillers per plant, dry weight per plant leaf area index (LAI) and plant height were significantly higher in bed planting than conventional method. In bed planting method, grain yield of rice (48.82q/h) was found to be more than the conventional method (35.74 q/h) during 2012.Varieties PR-118 yielded 47.61q/h more than PR-116 (39.97 q/h) in bed planting. Yield contributing characters like number of effective tillers, number of grains per plant and 1000-grain weight of rice were more in bed planting than conventional method. Harvest index and biological yield was also found to be more in bed planting method than conventional planting. Rice transplanted on 15th June yielded (50.15q/h) more than 30th June (41.45q/h) and 15th July (35.27q/h). Similar results were found in Kharif 2013. Interaction between dates of transplanting and varieties and between varieties and planting methods were found significant.


HortScience ◽  
2004 ◽  
Vol 39 (5) ◽  
pp. 1045-1049 ◽  
Author(s):  
Timothy N. Motis ◽  
Salvadore J. Locascio ◽  
James P. Gilreath

Yellow nutsedge (Cyperus esculentus L.) interference with bell pepper (Capsicum annuum L.) has become an important concern because of the phase-out of methyl bromide as a soil fumigant. The critical period for yellow nutsedge control in pepper was determined in two adjacent experiments (removal and plant-back) conducted twice in separate fields each Spring and Fall 2000 in Gainesville, Fla. In the removal experiment, nutsedge was planted with pepper in all but the full-season (13 weeks) weed-free controls and removed at 1, 3, 5, and 7 weeks after pepper transplanting (WAPT). Full-season weedy control plots in the removal experiment were obtained by never removing nutsedge planted with pepper (0 WAPT). In the plant-back experiment, all but the full-season weed-free controls received nutsedge with nutsedge planted at 0 (full-season weedy control), 1, 3, 5, and 7 WAPT. Sprouted nutsedge tubers were planted at a density of 45 tubers/m2. Results indicated that a nutsedge-free period from 3 to 5 WAPT in spring and 1 to 7 WAPT would prevent >10% yield reductions of large and marketable peppers. Full-season nutsedge interference reduced pepper yields by >70%. When planted with pepper, nutsedge shoots grew taller than pepper plants with nutsedge heights at 5 WAPT up to two times greater in fall than spring. Results indicated that yellow nutsedge control practices should be initiated earlier and continue longer in fall than spring due to faster early-season nutsedge growth in fall than spring.


Sign in / Sign up

Export Citation Format

Share Document