Evaluation of Herbicide Options for Alligatorweed (Alternanthera philoxeroides) Control in Rice

2015 ◽  
Vol 29 (4) ◽  
pp. 793-799 ◽  
Author(s):  
Samuel D. Willingham ◽  
Muthukumar V. Bagavathiannan ◽  
Katherine S. Carson ◽  
Todd J. Cogdill ◽  
Garry N. McCauley ◽  
...  

Alligatorweed is a perennial, invasive weed in southern United States rice production, but knowledge on effective management of this weed is limited, especially in conventional (non-imidazolinone-resistant) rice fields. Field studies were conducted in multiple environments in southeastern Texas to evaluate different herbicide options involving penoxsulam, propanil, triclopyr, halosulfuron, bispyribac-sodium, bensulfuron, and quinclorac for alligatorweed control in conventional drill-seeded rice when applied at early POST (EPOST), late POST (LPOST), or both. Among the herbicide options evaluated, penoxsulam alone (up to 83%), penoxsulam plus triclopyr (up to 87%), or bispyribac-sodium plus triclopyr (92%) provided superior alligatorweed control. Plots treated with penoxsulam plus triclopyr EPOST produced the highest yields (9,550 kg ha−1), which were comparable to plots receiving penoxsulam plus triclopyr LPOST (9,320 kg ha−1), penoxsulam alone EPOST (9,280 kg ha−1), and penoxsulam plus halosulfuron LPOST (9,180 kg ha−1). Considering both weed control and rice grain yields, penoxsulam plus triclopyr applied EPOST was found to be the best option among the treatments tested. The treatments bensulfuron alone, bensulfuron plus propanil, penoxsulam plus propanil, triclopyr plus propanil, and bispyribac-sodium plus propanil provided poor (≤ 65%) alligatorweed control. Results also suggest the likelihood for antagonistic interactions when tank-mix combinations tested in this study included propanil.

1989 ◽  
Vol 3 (1) ◽  
pp. 131-135 ◽  
Author(s):  
Khosro Khodayari ◽  
Paolo Nastasi ◽  
Roy J. Smith

Barnyardgrass and bearded sprangletop are severe weed pests in rice in the southern United States. These weeds are controlled with standard herbicide programs of propanil alone or propanil combined with pendimethalin or thiobencarb. However, new herbicides, such as fenoxaprop, may be effective alternatives for grass weed control in rice. Fenoxaprop at 0.17 kg ai/ha applied postemergence in programs with propanil, thiobencarb, or pendimethalin controlled barnyardgrass and bearded sprangletop in rice and performed as well as or better than standard treatments of propanil with thiobencarb or pendimethalin. Rice yielded well, and grain was of high quality.


2011 ◽  
Vol 25 (4) ◽  
pp. 556-562 ◽  
Author(s):  
Muthukumar V. Bagavathiannan ◽  
Jason K. Norsworthy ◽  
Robert C. Scott

Whether season-long weed control can be achieved in a furrow-irrigated rice system with similar herbicide inputs to that of a flooded system is not known. Field experiments were conducted in 2007 and 2008 at Pine Tree, AR to evaluate different herbicide programs on the weed control efficacy and rice grain yield in furrow-irrigated and flooded rice production systems. Six herbicide programs were evaluated with and without additional late-season “as-needed” herbicide treatments. Minor injury to rice was noted for quinclorac plus propanil. However, the injury was transient and the plants fully recovered. Overall weed control was greater in the flooded system compared with the furrow-irrigated system (up to 20% greater), because flooding effectively prevented the emergence of most terrestrial weeds. In addition, rice grain yields were 13 to 14% greater in flooded compared with furrow-irrigated plots. Irrespective of the irrigation system, herbicide programs that contained a PRE-applied herbicide provided greater weed control and resulted in greater yield compared with those that did not contain PRE-applied herbicide, indicative of the importance of early-season weed control in achieving higher grain yields. On the basis of weed control, yield, and weed treatment cost, the herbicide program with clomazone PRE followed by propanil at four- to five-leaf rice was more efficient than other programs evaluated in both irrigation systems. However, furrow-irrigated plots required as-needed herbicide applications, which were applied after the four- to five-leaf rice stage when two or more plots within a program exhibited ≤ 80% control for any of the weed species. This suggests that furrow-irrigated rice production demands additional weed management efforts and thereby increases production costs. There is also a possibility for substantial yield reduction in the furrow-irrigated system compared with the flooded system. Nevertheless, furrow-irrigated rice production can still be a viable option under water-limiting situations and under certain topographic conditions.


2004 ◽  
Vol 18 (4) ◽  
pp. 1111-1116 ◽  
Author(s):  
Daniel O. Stephenson ◽  
Jason A. Bond ◽  
Eric R. Walker ◽  
Mohammad T. Bararpour ◽  
Lawrence R. Oliver

Field studies were conducted in Arkansas in 1999, 2000, and 2001 to evaluate mesotrione applied preemergence (PRE) and postemergence (POST) for weed control in corn grown in the Mississippi Delta region of the United States. Mesotrione was applied PRE (140, 210, and 280 g/ha) alone and POST (70, 105, and 140 g/ha), alone or in tank mixtures with atrazine (280 g/ha). Standard treatments for comparison were S-metolachlor/atrazine PRE and S-metolachlor plus atrazine PRE followed by atrazine POST. All PRE treatments controlled velvetleaf, pitted morningglory, entireleaf morningglory, prickly sida, and broadleaf signalgrass 95% 2 wk after emergence (WAE). Mesotrione controlled velvetleaf 89% or more 4 and 6 WAE. Control of morningglory species by mesotrione POST averaged 92% 6 WAE. Prickly sida was controlled at least 90% by all treatments 4 WAE. Mesotrione applied alone PRE and POST controlled broadleaf signalgrass 83 to 91% 4 WAE. All treatments controlled broadleaf signalgrass less than 90% 6 WAE, except treatments that contained S-metolachlor, which gave 94% or greater control. Corn yield ranged from 10.5 to 12.4 Mg/ha and did not differ among treatments. Mesotrione PRE and POST provided excellent control of broadleaf weeds, but S-metolachlor was needed for broadleaf signalgrass control.


2011 ◽  
Vol 25 (4) ◽  
pp. 548-555 ◽  
Author(s):  
Dilpreet S. Riar ◽  
Jason K. Norsworthy

Research was conducted in 2009 and 2010 to evaluate influence of imazosulfuron rate and application timing on weed control in drill-seeded rice at Stuttgart, AR, and to evaluate imazosulfuron-containing herbicide programs in drill-seeded rice at Keiser and Stuttgart, AR. Weed species evaluated included barnyardgrass, broadleaf signalgrass, hemp sesbania, and yellow nutsedge. Imazosulfuron applied at 224 and 336 g ai ha−1during PRE, early POST (EPOST), or preflood (PREFLD) growth periods provided similar control of all weeds. Imazosulfuron applied EPOST or PREFLD controlled hemp sesbania and yellow nutsedge ≥ 93% both years at 5 and 7 wk after planting (WAP), except in 2009 when hemp sesbania control was ≤ 79% at 7 WAP. In 2010, because of inadequate rainfall, hemp sesbania and yellow nutsedge control with PRE-applied imazosulfuron was ≤29% at 5 and 7 WAP. Imazosulfuron plus clomazone PRE followed by (fb) quinclorac plus propanil EPOST and imazosulfuron plus quinclorac EPOST fb thiobencarb plus propanil PREFLD programs controlled hemp sesbania and barnyardgrass (in at least two site-years), and yellow nutsedge and broadleaf signalgrass (in at least one site-year) greater than or equal to clomazone plus quinclorac PRE fb propanil plus halosulfuron PRELD (standard program). No rice injury was observed with any herbicide program. Rice yield with all imazosulfuron-containing herbicide programs (6,630 to 8,130 kg ha−1) was similar to the standard herbicide program (7,240 kg ha−1). Imazosulfuron in mixture with clomazone, propanil, or quinclorac can be incorporated into herbicide programs of mid-South rice production for the control of broadleaf weeds and sedges.


Author(s):  
Dean A. Williams ◽  
Nathan E. Harms ◽  
Ian A. Knight ◽  
Brenda J. Grewell ◽  
Caryn Joy Futrell ◽  
...  

Abstract The distribution of genetic diversity in invasive plant populations can have important management implications. Alligatorweed [Alternanthera philoxeroides (Mart.) Griseb.] was introduced into the United States around 1900 and has since spread throughout much of the southern United States and California. A successful biological control program was initiated in the late 1960s that reduced A. philoxeroides in the southern United States, although control has varied geographically. The degree to which variation among genotypes may be responsible for variation in control efficacy has not been well studied due to a lack of genetic data. We sampled 373 plants from 90 sites across the United States and genotyped all samples at three chloroplast regions to help inform future management efforts. Consistent with clonal spread, there was high differentiation between sites, yet we found six haplotypes and high haplotype diversity (mean h = 0.48) across states, suggesting this plant has been introduced multiple times. Two of the haplotypes correspond to previously described biotypes that differ in their susceptibility to herbicides and herbivory. The geographic distribution of the three common haplotypes varied by latitude and longitude, while the other haplotypes were widespread or localized to one or a few sites. All the haplotypes we screened are hexaploid (6n = 102), which may enhance biological control. Future studies can use these genetic data to determine whether genotypes differ in their invasiveness or respond differently to control measures. Some states, for instance, have mainly a single haplotype that may respond more uniformly to a single control strategy, whereas other states may require a variety of control strategies. These data will also provide the basis for identifying the source regions in South America, which may lead to the discovery of new biological control agents more closely matched to particular genotypes.


2006 ◽  
Vol 7 (1) ◽  
pp. 24
Author(s):  
Gerald M. Ghidiu ◽  
Erin Hitchner ◽  
Melissa Zimmerman ◽  
Elwood Rossell

Field studies were conducted during 2004-2005 at the Rutgers Agricultural Research and Extension Center, Bridgeton, NJ to determine the effect of two different nozzle arrangements on the control of the carrot weevil, Listronotus oregonensis (LeConte), in processing carrots (Daucus carota L.). Two drop nozzles per row directed at the base of the plant resulted in significantly fewer damaged carrots caused by carrot weevil feeding each year as compared with a single nozzle centered as a 15.2-cm band located 30.5 cm over the row. However, carrot weevil damage to carrots was high each year in all treatments even during and after multiple pesticide applications, suggesting that growers need to use other management tactics with their spray program. Crop rotation, weed control, and planting date may be as important as pesticide selection and application for effective management of the carrot weevil. Accepted for publication 7 February 2006. Published 3 April 2006.


2006 ◽  
Vol 20 (4) ◽  
pp. 885-892 ◽  
Author(s):  
Jason A. Bond ◽  
Lawrence R. Oliver ◽  
Daniel O. Stephenson

Field studies were conducted at Fayetteville, Arkansas, to determine whether 47 Palmer amaranth accessions from different areas of the southern United States varied in response to postemergence applications of the registered rates of the isopropylamine salt of glyphosate (840 g ae/ha), fomesafen (420 g ai/ha), and pyrithiobac (70 g ai/ha). Glyphosate controlled all Palmer amaranth accessions at least 99% 21 d after treatment (DAT). Palmer amaranth control with fomesafen was equivalent for all accessions and at least 96% 21 DAT. Percent dry weight reductions were at least 92 and 94% for glyphosate and fomesafen, respectively. Palmer amaranth control with pyrithiobac was variable and ranged from 20 to 94% 21 DAT, but differences could not be attributed to accession origin. Herbicides with alternate modes of action from pyrithiobac should be utilized for Palmer amaranth control in regions where pyrithiobac has been used continuously.


Weed Science ◽  
2006 ◽  
Vol 54 (4) ◽  
pp. 713-719 ◽  
Author(s):  
Julio Scursoni ◽  
Frank Forcella ◽  
Jeffrey Gunsolus ◽  
Michael Owen ◽  
Richard Oliver ◽  
...  

There are many concerns about the effects of repeated use of glyphosate in glyphosate-resistant (GR) crops, including two that are seemingly contradictory. These are (1) weed escapes and (2) loss of weed diversity. Weeds that escape glyphosate treatment represent species that likely will become troublesome and difficult to control in the future, and identifying these future problems may allow more effective management. In contrast, complete weed control directly reduces the weed component of agroecosystem biodiversity and may lower other components indirectly (e.g., weed-dependent granivores). During 2001 and 2002 effects of glyphosate and conventional weed control treatments on weed community composition and GR soybean yields were studied. Field studies were conducted along a north–south transect of sites spanning a distance of 1600 km from Minnesota to Louisiana. Low-intensity use (single application yr−1) of glyphosate allowed more escapes and maintained higher weed diversity than high-intensity use (two applications yr−1) of glyphosate, and it was equivalent to or even higher than diversity in non-GR systems. Although the same weeds escaped from low- and high-intensity glyphosate treatments, frequency of escapes was higher with less intensive use. These results suggest that limited use of glyphosate would not have profound effects on weed diversity. In addition, crop yield did not differ between GR and non-GR treatments at high latitudes, but below 40° N latitude, with a longer cropping season, yields with low-intensity glyphosate use decreased by about 2% per degree latitude because of competition from escaped weeds.


Crop Science ◽  
2017 ◽  
Vol 57 (5) ◽  
pp. 2812-2818 ◽  
Author(s):  
Lauren M. Schwartz-Lazaro ◽  
Jason K. Norsworthy ◽  
Michael J. Walsh ◽  
Muthukumar V. Bagavathiannan

Sign in / Sign up

Export Citation Format

Share Document