Effect of the framework structure of 2D-nanofiller plates on the degree of reinforcement of polyurethane/graphene nanocomposites

Author(s):  
G. V. Kozlov ◽  
Yulia N. Karnet ◽  
I. V. Dolbin
2020 ◽  
Vol 17 (9) ◽  
pp. 1084-1101
Author(s):  
Tingjuan Wu ◽  
Xu Yao ◽  
Guan Wang ◽  
Xiaohe Liu ◽  
Hongfei Chen ◽  
...  

Background: Oleanolic Acid (OA) is a ubiquitous product of triterpenoid compounds. Due to its inexpensive availability, unique bioactivities, pharmacological effects and non-toxic properties, OA has attracted tremendous interest in the field of drug design and synthesis. Furthermore, many OA derivatives have been developed for ameliorating the poor water solubility and bioavailability. Objective: Over the past few decades, various modifications of the OA framework structure have led to the observation of enhancement in bioactivity. Herein, we focused on the synthesis and medicinal performance of OA derivatives modified on A-ring. Moreover, we clarified the relationship between structures and activities of OA derivatives with different functional groups in A-ring. The future application of OA in the field of drug design and development also was discussed and inferred. Conclusion: This review concluded the novel achievements that could add paramount information to the further study of OA-based drugs.


2014 ◽  
Vol 6 (3) ◽  
pp. 152-160 ◽  
Author(s):  
Xiaoshuang Zheng ◽  
Jingdong Liu ◽  
Long Chen ◽  
Jianping Gao ◽  
Yousheng Tao

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 202
Author(s):  
Yexin Dai ◽  
Jie Ding ◽  
Jingyu Li ◽  
Yang Li ◽  
Yanping Zong ◽  
...  

In this work, reduced graphene oxide (rGO) nanocomposites doped with nitrogen (N), sulfur (S) and transitional metal (Ni, Co, Fe) were synthesized by using a simple one-step in-situ hydrothermal approach. Electrochemical characterization showed that rGO-NS-Ni was the most prominent catalyst for glucose oxidation. The current density of the direct glucose alkaline fuel cell (DGAFC) with rGO-NS-Ni as the anode catalyst reached 148.0 mA/cm2, which was 40.82% higher than the blank group. The DGAFC exhibited a maximum power density of 48 W/m2, which was more than 2.08 folds than that of blank group. The catalyst was further characterized by SEM, XPS and Raman. It was speculated that the boosted performance was due to the synergistic effect of N, S-doped rGO and the metallic redox couples, (Ni2+/Ni3+, Co2+/Co3+ and Fe2+/Fe3+), which created more active sites and accelerated electron transfer. This research can provide insights for the development of environmental benign catalysts and promote the application of the DGAFCs.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1597
Author(s):  
Iman Jafari ◽  
Mohamadreza Shakiba ◽  
Fatemeh Khosravi ◽  
Seeram Ramakrishna ◽  
Ehsan Abasi ◽  
...  

The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.


2021 ◽  
Vol 5 (7) ◽  
pp. 191
Author(s):  
Yanshuai Wang ◽  
Siyao Guo ◽  
Biqin Dong ◽  
Feng Xing

The functionalization of graphene has been reported widely, showing special physical and chemical properties. However, due to the lack of surface functional groups, the poor dispersibility of graphene in solvents strongly limits its engineering applications. This paper develops a novel green “in-situ titania intercalation” method to prepare a highly dispersed graphene, which is enabled by the generation of the titania precursor between the layer of graphene at room temperature to yield titania-graphene nanocomposites (TiO2-RGO). The precursor of titania will produce amounts of nano titania between the graphene interlayers, which can effectively resist the interfacial van der Waals force of the interlamination in graphene for improved dispersion state. Such highly dispersed TiO2-RGO nanocomposites were used to modify epoxy resin. Surprisingly, significant enhancement of the mechanical performance of epoxy resin was observed when incorporating the titania-graphene nanocomposites, especially the improvements in tensile strength and elongation at break, with 75.54% and 176.61% increases at optimal usage compared to the pure epoxy, respectively. The approach presented herein is easy and economical for industry production, which can be potentially applied to the research of high mechanical property graphene/epoxy composite system.


Carbon ◽  
2021 ◽  
Author(s):  
Mohannad Naeem ◽  
Hsu-Chiang Kuan ◽  
Andrew Michelmore ◽  
Sirong Yu ◽  
Adrian P. Mouritz ◽  
...  

2021 ◽  
Author(s):  
Elssa George ◽  
Jomon Joy ◽  
Saithalavi Anas

Sign in / Sign up

Export Citation Format

Share Document