GYROTON – A NEW TYPE OF ELECTRONIC DEVICE ON THE BASIS OF CORRUGATED RESONATOR

2017 ◽  
Vol 76 (20) ◽  
pp. 1777-1795
Author(s):  
S. V. Kolosov ◽  
А. А. Kuraev ◽  
I. Ye. Zaytseva
Keyword(s):  
2011 ◽  
Vol 354-355 ◽  
pp. 1394-1399
Author(s):  
Su Rong Qu ◽  
Zhong Yang Zhang

IGCT is a kind of new type power electronic device which developed from GTO and IGBT . In this paper, Author based on analysis of the internal structure of GTO, shows how GTO development IGCT through technical methods.Through simulation of its off and on performance, the work curve and comparing results of the two devices are given. Then on two components of the inverter circuits are analyzed and compared. Thinking in large power AC drive locomotive, IGCT inverter is greatly simplifier than GTO inverter circuit, and superior performance,it will become the main converter for AC driving locomotive.


2019 ◽  
Vol 43 (24) ◽  
pp. 9634-9640 ◽  
Author(s):  
Shuangsuo Mao ◽  
Bai Sun ◽  
Tian Yu ◽  
Weiwei Mao ◽  
Shouhui Zhu ◽  
...  

A new type of memristive memory device with an edible garlic-constructed Ag/garlic/fluorine-doped SnO2(FTO) structure for analog neuromorphic sensor applications was designed.


Plasma ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
Stanislav Kolosov ◽  
Alexander Kurayev ◽  
Alexey Rak ◽  
Semen Kurkin ◽  
Artem Badarin ◽  
...  

A new type of high-power electronic device—a gyroton with a corrugated resonator—is described and investigated. Spatial bunching of the electron beam does not occur in this device, however, highly efficient electron beam power conversion into the rotating electromagnetic field power is possible. The rectilinear electron beam deviates from the axis by the slow TM11 wave, then it gives up longitudinal energy to the same wave with more than 78% efficiency, and an output power up to 30 MW. The developed mathematical model of the interaction of the relativistic electron beam with an irregular circular waveguide and resonator fields presented in this article can be used to calculate and optimize the processes occurring in various microwave electronic devices, such as gyrotrons, gyrotons, TWT, Gyro-TWT, and BWT.


2001 ◽  
Vol 1 (Special) ◽  
pp. 108-112
Author(s):  
J. Goodkind ◽  
S. Pilla

In the previous papers, the system of qubits using electrons on a liquid helium film was described. In this paper we describe the physical realization of the system that we have begun to fabricate. We will not in this brief discussion describe how we intend to operate the system. We will show that we are nano- and micro-fabricating a new type of electronic device that differs from other microelectronic devices in that the final step of the fabrication deposits a layer of helium rather than some other dielectric. The operation of the device will differ in that it manipulates single electrons and it must operate at low temperatures.


2017 ◽  
Vol 22 (3) ◽  
pp. 37-46
Author(s):  
S. V. Kolosov ◽  
◽  
A. A. Kuraev ◽  
I. E. Zaitseva
Keyword(s):  

Author(s):  
Lucien F. Trueb

A new type of synthetic industrial diamond formed by an explosive shock process has been recently developed by the Du Pont Company. This material consists of a mixture of two basically different forms, as shown in Figure 1: relatively flat and compact aggregates of acicular crystallites, and single crystals in the form of irregular polyhedra with straight edges.Figure 2 is a high magnification micrograph typical for the fibrous aggregates; it shows that they are composed of bundles of crystallites 0.05-0.3 μ long and 0.02 μ. wide. The selected area diffraction diagram (insert in Figure 2) consists of a weak polycrystalline ring pattern and a strong texture pattern with arc reflections. The latter results from crystals having preferred orientation, which shows that in a given particle most fibrils have a similar orientation.


Author(s):  
William Krakow

An electronic device has been constructed which manipulates the primary beam in the conventional transmission microscope to illuminate a specimen under a variety of virtual condenser aperture conditions. The device uses the existing tilt coils of the microscope, and modulates the D.C. signals to both x and y tilt directions simultaneously with various waveforms to produce Lissajous figures in the back-focal plane of the objective lens. Electron diffraction patterns can be recorded which reflect the manner in which the direct beam is tilted during exposure of a micrograph. The device has been utilized mainly for the hollow cone imaging mode where the device provides a microscope transfer function without zeros in all spatial directions and has produced high resolution images which are also free from the effect of chromatic aberration. A standard second condenser aperture is employed and the width of the cone annulus is readily controlled by defocusing the second condenser lens.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe ◽  
J. Michael Moseley

We have designed and built an electronic device which compares the resistance of a defined area of vacuum evaporated material with a variable resistor. When the two resistances are matched, the device automatically disconnects the primary side of the substrate transformer and stops further evaporation.This approach to controlled evaporation in conjunction with the modified guns and evaporation source permits reliably reproducible multiple Pt shadow films from a single Pt wrapped carbon point source. The reproducibility from consecutive C point sources is also reliable. Furthermore, the device we have developed permits us to select a predetermined resistance so that low contrast high-resolution shadows, heavy high contrast shadows, or any grade in between can be selected at will. The reproducibility and quality of results are demonstrated in Figures 1-4 which represent evaporations at various settings of the variable resistor.


Author(s):  
T. Ichinokawa ◽  
H. Maeda

I. IntroductionThermionic electron gun with the Wehnelt grid is popularly used in the electron microscopy and electron beam micro-fabrication. It is well known that this gun could get the ideal brightness caluculated from the Lengumier and Richardson equations under the optimum condition. However, the design and ajustment to the optimum condition is not so easy. The gun has following properties with respect to the Wehnelt bias; (1) The maximum brightness is got only in the optimum bias. (2) In the larger bias than the optimum, the brightness decreases with increasing the bias voltage on account of the space charge effect. (3) In the smaller bias than the optimum, the brightness decreases with bias voltage on account of spreading of the cross over spot due to the aberrations of the electrostatic immersion lens.In the present experiment, a new type electron gun with the electrostatic and electromagnetic lens is designed, and its properties are examined experimentally.


Author(s):  
J. Hefter

Semiconductor-metal composites, formed by the eutectic solidification of silicon and a metal silicide have been under investigation for some time for a number of electronic device applications. This composite system is comprised of a silicon matrix containing extended metal-silicide rod-shaped structures aligned in parallel throughout the material. The average diameter of such a rod in a typical system is about 1 μm. Thus, characterization of the rod morphology by electron microscope methods is necessitated.The types of morphometric information that may be obtained from such microscopic studies coupled with image processing are (i) the area fraction of rods in the matrix, (ii) the average rod diameter, (iii) an average circularity (roundness), and (iv) the number density (Nd;rods/cm2). To acquire electron images of these materials, a digital image processing system (Tracor Northern 5500/5600) attached to a JEOL JXA-840 analytical SEM has been used.


Sign in / Sign up

Export Citation Format

Share Document