Effects of randomness in steel mechanical properties on rotational capacity of RC beams

10.1617/13591 ◽  
2005 ◽  
Vol 34 (236) ◽  
pp. 92-99
Author(s):  
M. De Stefano
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ning Zhuang ◽  
Honghan Dong ◽  
Da Chen ◽  
Yeming Ma

This paper presents results from experiments on aged and seriously damaged reinforced concrete (RC) beams strengthened with different arrangements of external carbon fiber-reinforced polymer (CFRP) laminates and end anchorages. Seven RC beams from an old bridge, measuring 250 × 200 × 2300 mm, were tested. All specimens were loaded to yield load to evaluate initial mechanical properties. Then, these seriously damaged specimens were repaired using different CFRP-reinforcing schemes and reloaded to failure. The yield load growth due to CFRP reinforcement ranged from 5% to 36%. Different parameters including CFRP dimension and position, bonding length, and end anchorage were investigated and facilitated conclusions on beam ductility, load-midspan deflection response, and failure mode. This research contributes to knowledge about the CFRP repair of aged and seriously damaged beams to ensure better performance in overloaded conditions.


2011 ◽  
Vol 368-373 ◽  
pp. 1038-1041
Author(s):  
An Hong Bao ◽  
Zhen Yu Qiu ◽  
Peng Wang

Debonding of concrete occurs when the interface principal stress reaches the ultimate tensile strength. We propose the use of carbon fiber plate attached to the beam bottom, which makes finite element analysis of the mechanical properties of debonding concrete beams more reasonable. In addition, formulas of this theory are given and applied in the finite element analysis. Finally, it is shown by a number of experimental results.


The focus of this analysis is the review of steel plate strengthened RC beams using Single row and Stagger row bolt arrangements and to compare the bonding behaviour of different bolts arrangement under flexure. Also, to investigate the behaviour, load bearing capacity and the deflection for control and steel plate bonded beams. This research is constrained by FEM analysis utilizing ANSYS to the actions of standard RC Beam and RC beam steel plate associated.


2001 ◽  
Vol 34 (2) ◽  
pp. 92-99 ◽  
Author(s):  
M. De Stefano ◽  
R. Nudo ◽  
R. Nudo ◽  
G. Sarà ◽  
S. Viti

2019 ◽  
Vol 65 (4) ◽  
pp. 217-228
Author(s):  
J. Korentz

AbstractThe paper presents an analysis of the behaviour of bent reinforced concrete beams strengthened with CFRP laminates fixed with adhesive before and after unloading, and more importantly, an analysis of the work of reinforced concrete beams strengthened with pre-stressed CFRP laminates fixed with adhesive. The analyses were based on a moment-curvature model prepared by the author for reinforced concrete beams strengthened under load with pre-stressed CFRP laminates. The model was used to determine the effect of compression with CFRP laminates and their mechanical properties on the effectiveness of strengthening the reinforced concrete beams analysed in this study.


2017 ◽  
Vol 3 (2) ◽  
pp. 105
Author(s):  
P. J. Jaua Junior ◽  
Clotilda Petrus ◽  
J.D. Nyuin

The significant increment of waste concrete in recent years that is happening worldwide has a tremendous consequence to the environment. Recycling concrete wastes will reduce the amount of waste as well as save natural resources, thus help promote green and sustainable development. This study presents an experimental investigation dealing with the development of green concrete using recycled concrete waste (RCWA) as coarse aggregate replacement materials. The mechanical properties of reinforced concrete (RC) beams in terms of its compressive and flexural strengths were determined. The main parameter considered is the percentage of RCWA in the concrete design of RC beams that ranges from 0% to 50%.  From the test results, it was observed that the flexural strength and the compression strength decreased as the percentage of recycled concrete waste aggregate used increased. Generally, the flexural strength of RC beam with RCWA can be 5% to 12.4% lower than that of conventional concrete made with natural course aggregate.


2021 ◽  
Vol 6 (6) ◽  
pp. 87
Author(s):  
Wael Abuzaid ◽  
Rami Hawileh ◽  
Jamal Abdalla

The use of aluminum alloys for external strengthening of reinforced concrete (RC) beams has been capturing research interest. Exposure to harsh environmental conditions can severely impact the strengthening efficiency. This works aims to investigate the degradation in the mechanical properties of aluminum alloy AA 5083 plates when exposed to temperatures ranging from 25 to 300 °C. Quasi-static Isothermal tensile experiments were conducted at different temperatures. It was observed from the experimental results that the yield strength remained constant in the temperature range of 25–150 °C before starting to drop beyond 150 °C, with a total reduction of ≈ 40% at 300 °C. The elastic modulus was temperature sensitive with about 25% reduction at 200 °C before experiencing a significant and pronounced reduction at 300 °C. The percentage drops in stiffness and yield strength at 300 °C were 62.8% and 38%, respectively. In addition, the Mechanical Threshold Strength Model (MTS) parameters were established to capture the yield strength temperature dependence. Two analytical models were developed based on the experimental results. Both models can reasonably predict the elastic modulus and yield strength of AA 5083 plates as a function of temperature. It was concluded that AA plates should be properly insulated when used as externally bonded reinforcement to strengthen RC beams.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Sign in / Sign up

Export Citation Format

Share Document