The structure of cranidial shape variation in three early ptychoparioid trilobite species from the Dyeran-Delamaran (traditional “Lower-Middle” Cambrian) boundary interval of Nevada, U.S.A.

2011 ◽  
Vol 85 (2) ◽  
pp. 179-225 ◽  
Author(s):  
Mark Webster

The structure of cranidial shape variation in the early ptychoparioid trilobites Crassifimbra walcotti, Crassifimbra? metalaspis (new combination), and Eokochaspis nodosa is explored using landmark-based geometric morphometric techniques, and is found to be generally similar among the species. Allometry is the strongest single source of cranidial shape variation within each species. The species share several trends in their respective patterns of ontogenetic shape change, but differ in the relative magnitude of these shared trends. Species-specific trends are also present. Each species follows a unique trajectory of ontogenetic shape change. The species exhibit subtle but significant differences in mean cranidial shape even at small size (sagittal length 1.75 mm); the magnitude of interspecific differences becomes larger at larger size (sagittal length 4.2 mm).For conspecific cranidia of a given size, the major pattern of covariance among anatomical parts is essentially identical to the pattern of covariance among those parts during ontogeny. Developmentally determined covariance patterns among cranidial regions might be responsible for ontogenetic shape change and a portion of non-allometric shape intraspecific variation. Interspecific differences in cranidial shape resulted from complex local modifications to growth pattern and cannot be attributed to simple ontogenetic scaling.The new collections permit the first description of non-cranidial sclerites of C. walcotti. A cephalic median organ is documented on C. walcotti, representing the oldest known occurrence of this structure in trilobites.

Paleobiology ◽  
2018 ◽  
Vol 45 (1) ◽  
pp. 154-166 ◽  
Author(s):  
Brandon P. Hedrick ◽  
Emma R. Schachner ◽  
Gabriel Rivera ◽  
Peter Dodson ◽  
Stephanie E. Pierce

AbstractBiologic asymmetry is present in all bilaterally symmetric organisms as a result of normal developmental instability. However, fossilized organisms, which have undergone distortion due to burial, may have additional asymmetry as a result of taphonomic processes. To investigate this issue, we evaluated the magnitude of shape variation resulting from taphonomy on vertebrate bone using a novel application of fluctuating asymmetry. We quantified the amount of total variance attributed to asymmetry in a taphonomically distorted fossil taxon and compared it with that of three extant taxa. The fossil taxon had an average of 27% higher asymmetry than the extant taxa. In spite of the high amount of taphonomic input, the major axes of shape variation were not greatly altered by removal of the asymmetric component of shape variation. This presents the possibility that either underlying biologic trends drive the principal directions of shape change irrespective of asymmetric taphonomic distortion or that the symmetric taphonomic component is large enough that removing only the asymmetric component is inadequate to restore fossil shape. Our study is the first to present quantitative data on the relative magnitude of taphonomic shape change and presents a new method to further explore how taphonomic processes impact our interpretation of the fossil record.


Zoosymposia ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 159-171
Author(s):  
ROBERT E. SWISHER ◽  
JIH-PAI LIN

Irregular echinoids, particularly clypeasteroids or “sand dollars”, have obtained highly adaptive morphologies suited to their life habitats. Specimens (n = 26) of a clypeasteroid echinoid Arachnoides placenta were examined to understand how these adaptive morphologies were ontogenetically and developmentally obtained. Ontogenetically, early post-larval juvenile specimens have a pentagonal morphologic outline (known as ambitus) that shifts to a circular or a sub-circular morphology observed in the largest adult specimens. Circular morphology appears optimized for the adult life habitat or niche. Both landmark and semilandmark geometric morphometric methodologies were applied to quantify shape change, ontogenetic variation, and developmental morphology in A. placenta. Ambitus change is concentrated along the interambulacral regions with broader curvature variations occurring across both ambulacral and interambulacral regions. Circular adult morphology was a result of non-isometric shape change concentrated anteriorly with minor variation around posterior margin/periproctal furrow. Interior morphologic change of the petaloids and periproct was also quantified, mainly impacting posterior outline morphology. Minimal deformation of the basicoronal plates was detected, indicating stability during ontogeny. Results indicated that complex, non-isometric allometric shape change, both along the ambitus and interiorly, is required to morph from a pentagonal outline in post-larval juveniles to a circular or sub-circular ambitus morphology in adults. This analysis demonstrates the advantages of both landmark and semilandmark geometric morphometric analyses for quantifying developmental change and shape variation in Clypeasteroida.


Zootaxa ◽  
2019 ◽  
Vol 4560 (3) ◽  
pp. 563
Author(s):  
VANJA MARKOVIĆ ◽  
VUKICA VUJIĆ ◽  
MARIJA ILIĆ ◽  
JELENA TOMOVIĆ ◽  
VERA NIKOLIĆ ◽  
...  

The operculum morphology of neritid snails of genus Theodoxus Montfort, 1810 yields important species-specific taxonomic characters. This study is the first attempt to describe morphological differences in snails based on operculum shapes using a geometric morphometric approach. We examined the variability of opercular shapes between sexes and among populations and species based on 91 opercula of adult specimens belonging to six populations of three species of Theodoxus from the central Balkan and the southern border of the Pannonian plain. There are no sex-related differences in operculum shape and size in the studied species. The presence of shape variations influenced by size (allometry) was confirmed for T. danubialis (C. Pfeiffer, 1828) indicating that allometry could be a component of the morphological variation of this species. At the intraspecific level, phenotypic plasticity of operculum shape was found in T. danubialis and T. fluviatilis (Linnaeus, 1758). Of particular interest is the lack of morphological variability in the rare and endangered T. transversalis (C. Pfeiffer, 1828). At the species level a clear morphological distinction of T. fluviatilis from T. danubialis and T. transversalis was detected, confirming that the operculum with a rib could be used as a species-specific morphological character. The main morphological differences between species are an outwardly-stretched opercular/apophysal rib and a shortened tip of the opercular plate in T. fluviatilis, compared to the same structures in T. danubialis and T. transversalis. 


2019 ◽  
Vol 187 (4) ◽  
pp. 1016-1040 ◽  
Author(s):  
Alice K Burridge ◽  
Remy Van Der Hulst ◽  
Erica Goetze ◽  
Katja T C A Peijnenburg

Abstract To track changes in pelagic biodiversity in response to climate change, it is essential to accurately define species boundaries. Shelled pteropods are a group of holoplanktonic gastropods that have been proposed as bio-indicators because of their vulnerability to ocean acidification. A particularly suitable, yet challenging group for integrative taxonomy is the pteropod genus Diacavolinia, which has a circumglobal distribution and is the most species-rich pteropod genus, with 24 described species. We assessed species boundaries in this genus, with inferences based on geometric morphometric analyses of shell-shape variation, genetic (cytochrome c oxidase subunit I, 28S rDNA sequences) and geographic data. We found support for a total of 13 species worldwide, with observations of 706 museum and 263 freshly collected specimens across a global collection of material, including holo‐ and paratype specimens for 14 species. In the Atlantic Ocean, two species are well supported, in contrast to the eight currently described, and in the Indo‐Pacific we found a maximum of 11 species, partially merging 13 of the described species. Distributions of these revised species are congruent with well-known biogeographic provinces. Combining varied datasets in an integrative framework may be suitable for many diverse taxa and is an important first step to predicting species-specific responses to global change.


2018 ◽  
Vol 5 (2) ◽  
Author(s):  
Marcelo Cardillo ◽  
Judith Charlin

This work is focused in the study of Patagonian lithic projectile points shape variation from a phylogenetic perspective pursuing three main aims: first, generate a model of projectile point shape diversification and morphospace evolution; second, estimate shape variation through time, and finally, assess the robustness of previous results using the same methods but in a larger sample with better spatial coverage. A previous work using geometric morphometric and cladistic methods suggested a pattern of general morphological diversification across Patagonia related, at least in part, to the spatial distance between cases, distinguishing two main clades in northern (43-45° S) and southern (50-52° S) Patagonia. In the present work to study this pattern in a more detailed level, a sample of ca. 1200 projectile points was used to obtain statistically different morphological classes performing unsupervised K-means searching. Shape characters were used to describe the different taxonomic units and to perform the phylogenetic analysis (through the Neighbor Joining and Maximun Parsimony methods) using as an ancestor the earliest point type known to the region (Fishtail point). The new results suggest that projectile points with longer and narrow blades and smaller stems evolved later in Patagonia and occupy a different sector of morphospace that could be related to the emergence of different technical systems, like the bow and arrow. However, these results do not support the previous ones of a projectile point diversification pattern mediated by spatial distance, maybe due to the reduction of contrast between the extreme north and south of Patagonia by the larger spatial coverage used in the present analysis.


2017 ◽  
Vol 65 (4) ◽  
pp. 327 ◽  
Author(s):  
Saskia Grootemaat ◽  
Ian J. Wright ◽  
Peter M. van Bodegom ◽  
Johannes H. C. Cornelissen ◽  
Veronica Shaw

Bark shedding is a remarkable feature of Australian trees, yet relatively little is known about interspecific differences in bark decomposability and flammability, or what chemical or physical traits drive variation in these properties. We measured the decomposition rate and flammability (ignitibility, sustainability and combustibility) of bark from 10 common forest tree species, and quantified correlations with potentially important traits. We compared our findings to those for leaf litter, asking whether the same traits drive flammability and decomposition in different tissues, and whether process rates are correlated across tissue types. Considerable variation in bark decomposability and flammability was found both within and across species. Bark decomposed more slowly than leaves, but in both tissues lignin concentration was a key driver. Bark took longer to ignite than leaves, and had longer mass-specific flame durations. Variation in flammability parameters was driven by different traits in the different tissues. Decomposability and flammability were each unrelated, when comparing between the different tissue types. For example, species with fast-decomposing leaves did not necessarily have fast-decomposing bark. For the first time, we show how patterns of variation in decomposability and flammability of bark diverge across multiple species. By taking species-specific bark traits into consideration there is potential to make better estimates of wildfire risks and carbon loss dynamics. This can lead to better informed management decisions for Australian forests, and eucalypt plantations, worldwide.


2020 ◽  
Vol 17 (163) ◽  
pp. 20190721
Author(s):  
J. Larsson ◽  
A. M. Westram ◽  
S. Bengmark ◽  
T. Lundh ◽  
R. K. Butlin

The growth of snail shells can be described by simple mathematical rules. Variation in a few parameters can explain much of the diversity of shell shapes seen in nature. However, empirical studies of gastropod shell shape variation typically use geometric morphometric approaches, which do not capture this growth pattern. We have developed a way to infer a set of developmentally descriptive shape parameters based on three-dimensional logarithmic helicospiral growth and using landmarks from two-dimensional shell images as input. We demonstrate the utility of this approach, and compare it to the geometric morphometric approach, using a large set of Littorina saxatilis shells in which locally adapted populations differ in shape. Our method can be modified easily to make it applicable to a wide range of shell forms, which would allow for investigations of the similarities and differences between and within many different species of gastropods.


2017 ◽  
Vol 75 (2) ◽  
pp. 711-718
Author(s):  
George Geladakis ◽  
Nikolaos Nikolioudakis ◽  
George Koumoundouros ◽  
Stylianos Somarakis

Abstract Morphometric characters have traditionally been used to describe the population structure of fishes. Body shape variation, which is often environmentally induced, may provide a good record of short-term population structuring. However, factors unrelated to environmental or genetic influences on body morphology may complicate sampling and the use of morphometric features for stock discrimination. In the present study, we used geometric morphometric variables to compare the European sardine Sardina pilchardus putative stocks of the Aegean and Ionian Seas (eastern Mediterranean). Landmark data of fish collected at seven different sites were subjected to canonical analysis of principal coordinates (CAP). The average body condition of sardines from these sites was strongly and linearly related to corresponding scores along CAP1, the axis exhibiting the highest correlation with the morphometric data cloud. The average scores along CAP2 and CAP3 appeared to be linked to morphological differentiation related to temperature effects and prey availability (mesozooplankton biomass). Despite the primary and confounding effect of body condition, discrimination of different morphotypes corresponding to the Aegean and the Ionian Sea stocks was highly significant with 81% correct reallocations for the respective CAP model.


2016 ◽  
Vol 94 (12) ◽  
pp. 829-836 ◽  
Author(s):  
B.J. Klüg-Baerwald ◽  
L.E. Gower ◽  
C.L. Lausen ◽  
R.M. Brigham

Winter activity of bats is common, yet poorly understood. Other studies suggest a relationship between winter activity and ambient temperature, particularly temperature at sunset. We recorded echolocation calls to determine correlates of hourly bat activity in Dinosaur Provincial Park, Alberta, Canada. We documented bat activity in temperatures as low as −10.4 °C. We observed big brown bats (Eptesicus fuscus (Palisot de Beauvois, 1796)) flying at colder temperatures than species of Myotis bats (genus Myotis Kaup, 1829). We show that temperature and wind are important predictors of winter activity by E. fuscus and Myotis, and that Myotis may also use changes in barometric pressure to cue activity. In the absence of foraging opportunity, we suggest these environmental factors relate to heat loss and thus the energetic cost of flight. To understand the energetic consequences of bat flight in cold temperatures, we estimated energy expenditure during winter flights of E. fuscus and little brown myotis (Myotis lucifugus (Le Conte, 1831)) using species-specific parameters. We estimated that winter flight uses considerable fat stores and that flight thermogenesis could mitigate energetic costs by 20% or more. We also show that temperature-dependent interspecific differences in winter activity likely stem from differences between species in heat loss and potential for activity–thermoregulatory heat substitution.


Author(s):  
Valentina P. Vetrova ◽  
◽  
Alexey P. Barchenkov ◽  
Nadezhda V. Sinelnikova ◽  
◽  
...  

Geometric morphometric analysis of shape variation in the cone scales of two closely related larch species, Larix dahurica Laws. (=Larix gmelinii (Rupr.) Rupr) and L. cajanderi Mayr, was carried out. The data on the taxonomy and distribution of L. dahurica and L. cajanderi are contradictory. The taxonomic status of L. cajanderi has been confirmed by the genetic and morphological studies performed in Russia and based on considerable evidence, but the species has not been recognized internationally, being considered as a synonym of Larix gmelinii var. gmelinii. In the systematics of larch, morphological characters of the generative organs are mainly used as diagnostic markers, among the most important being the shape variation of the cone scales. The aim of this study was to test geometric morphometrics as a tool for analyzing differentiation of L. dahurica and L. cajanderi in the shape of their cone scales. Characterization of shape variations in cone scales using geometric morphometric methods consists in digitizing points along an outline of scales followed by analysis of partial warps, describing individual differences in coordinates of the outline points. We studied the populations of L. dahurica from Evenkia and the Trans-Baikal region and six L. cajanderi populations from Yakutia and Magadan Oblast. In each population, we analyzed samples of 100-150 cones collected from 20-30 trees. Scales taken from the middle part of the cones were scanned using an Epson Perfection V500 Photo. On the scanned images, outline points were placed with a TPSDig program (Rolf, 2010), using angular algorithm (Oreshkova et al., 2015). The data were processed and analyzed using Integrated Morphometrics Programs (IMP) software (http://www.canisius.edu/~sheets/ morphsoft.html, Sheets, 2001), following the guidelines on geometric morphometrics in biology (Pavlinov, Mikeshina, 2002; Zelditch et al., 2004). Initial coordinates of the scale landmarks were aligned with the mean structure for L. dahurica and L. cajanderi cone scales using Procrustes superimposition in the CoordGen6 program. PCA based on covariances of partial warp scores was applied to reveal directions of variation in the shape of the cone scales. The relative deformations of the cone scales (PCA scores) were used as shape variables for statistical comparisons of these two larch species with canonical discriminant analysis. Morphotypes of the cone scales were distinguished in L. dahurica populations by pairwise comparison of samples from trees in the TwoGroup6h program using Bootstrap resampling-based Goodall’s F-test (Sheets, 2001). Samples from the trees in which the cone scales differed significantly (p < 0.01) were considered to belong to different morphotypes. Morphotypes distinguished in L. dahurica populations were compared with the morphotypes that we had previously determined in L. cajanderi populations. The composition and the frequency of occurrence of morphotypes were used to determine phenotypic distances between populations (Zhivotovskii, 1991). Multidimensional scaling matrix of the phenotypic distances was applied for ordination of larch populations. In this research, we revealed differentiation of L. dahurica and L. cajanderi using geometric morphometric analysis of the shape variation of cone scales. The results of PCA of partial warp scores exposed four principal components, which account for 90% of total explained variance in the shape of the cone scales in the two larch species. Graphical representations of these shape transformations in the vector form characterized directions of shape variability in scales corresponding to the maximum and minimum values of four principal components (See Fig. 2). PCA-ordination of the larch populations revealed some difference in the shape variation of the cone scales in L. dahurica and L. cajanderi (See Fig. 3). The results of canonical discriminant analysis of relative deformations of scales showed differentiation of the populations of the two larch species (See Fig. 4). Eleven morphotypes were identified in L. dahurica cones from Evenkia and nine morphotypes in the Ingoda population, three of the morphotypes being common for both populations (See Fig. 5). The shape of L. dahurica cone scales varied from spatulate to oval and their apical margins from weakly sinuate to distinctly sinuate. The Trans-Baikal population was dominated by scales with obtuse (truncate) and rounded apexes. The obtained morphotypes were compared with 25 cone scale morphotypes previously distinguished in the Yakut and the Magadan L. cajanderi populations (See Fig. 3). Four similar morphotypes of cone scales were revealed in the North-Yeniseisk population of L. dahurica and the Yakut populations of L. cajanderi. The differences between them in the populations of the two larch species were nonsignificant (p > 0.01). All morphotypes of cone scales from the Ingoda population of L. dahurica differed significantly from L. cajanderi cone scale morphotypes. The results of multidimensional scaling phenotypic distance matrix calculated based on the similarity of morphotypes of L. dahurica and L. cajanderi populations were consistent with the results of their differentiation based on relative deformations of scales obtained using canonical discriminant analysis (See Fig. 4 and Fig. 7). In spite of the differences in the shape of the cone scales between the North-Yeniseisk and the Trans-Baikal populations of L. dahurica, they both differed from L. cajanderi populations. Thus, phenotypic analysis confirmed differentiation of these two larch species. Despite the similarities between a number of morphotypes, the Yakut L. cajanderi populations were differentiated from L. dahurica populations. Significant differences were noted between intraspecific groups: between L. cajanderi populations from Okhotsk-Kolyma Upland and Yakutia and between L. dahurica populations from Evenkia and the Trans-Baikal region (See Fig. 4). The similarities between species and intraspecific differences may be attributed to the ongoing processes of hybridization and species formation in the region where the ranges of the larches overlap with the ranges of L. czekanowskii Szafer and L. dahurica×L. cajanderi hybrids. Geometric morphometrics can be used as an effective tool for analyzing differentiation of L. dahurica and L. cajanderi in the shape of their cone scales.


Sign in / Sign up

Export Citation Format

Share Document