Fruit Fly, Drosophila melanogaster, as an In Vivo Tool to Study the Biological Effects of Proton Irradiation

2020 ◽  
Author(s):  
Koichiro Nakajima ◽  
TianXiang Gao ◽  
Kazuhiko Kume ◽  
Hiromitsu Iwata ◽  
Shuichi Hirai ◽  
...  

The clinical superiority of proton therapy over photon therapy has recently gained recognition; however, the biological effects of proton therapy remain poorly understood. The lack of in vivo evidence is especially important. Therefore, the goal of this study was to validate the usefulness of Drosophila melanogaster as an alternative tool in proton radiobiology. To determine whether the comparative biological effects of protons and X rays are detectable in Drosophila, we assessed their influence on survival and mRNA expression. Postirradiation observation revealed that protons inhibited their development and reduced the overall survival rates more effectively than X rays. The relative biological effectiveness of the proton beams compared to the X rays estimated from the 50% lethal doses was 1.31. At 2 or 24 h postirradiation, mRNA expression analysis demonstrated that the expression patterns of several genes (such as DNA-repair-, apoptosis- and angiogenesis-related genes) followed different time courses depending on radiation type. Moreover, our trials suggested that the knockdown of individual genes by the GAL4/UAS system changes the radiosensitivity in a radiation type-specific manner. We confirmed this Drosophila model to be considerably useful to evaluate the findings from in vitro studies in an in vivo system. Furthermore, this model has a potential to elucidate more complex biological mechanisms underlying proton irradiation.

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2198
Author(s):  
Marcos Mateo-Fernández ◽  
Fernando Valenzuela-Gómez ◽  
Rafael Font ◽  
Mercedes Del Río-Celestino ◽  
Tania Merinas-Amo ◽  
...  

Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®.


2005 ◽  
Vol 17 (8) ◽  
pp. 775 ◽  
Author(s):  
Hiemke M. Knijn ◽  
Christine Wrenzycki ◽  
Peter J. M. Hendriksen ◽  
Peter L. A. M. Vos ◽  
Elly C. Zeinstra ◽  
...  

Bovine blastocysts produced in vitro differ substantially from their in vivo-derived counterparts with regard to glucose metabolism, level of apoptosis and mRNA expression patterns. Maternal embryonic genomic transition is a critical period in which these changes could be induced. The goals of the present study were twofold: (1) to identify the critical period of culture during which the differences in expression of gene transcripts involved in glucose metabolism are induced; and (2) to identify gene transcripts involved in apoptosis that are differentially expressed in in vitro- and in vivo-produced blastocysts. Relative abundances of transcripts for the glucose transporters Glut-1, Glut-3, Glut-4 and Glut-8, and transcripts involved in the apoptotic cascade, including BAX, BCL-XL, XIAP and HSP 70.1, were analysed by a semiquantitative reverse transcription–polymerase chain reaction assay in single blastocysts produced in vitro or in vivo for specific time intervals, that is, before or after maternal embryonic transition. Whether the culture environment was in vitro or in vivo affected the expression of glucose transporter transcripts Glut-3, Glut-4 and Glut-8. However, the critical period during culture responsible for these changes, before or after maternal embryonic transition, could not be determined. With the exception of XIAP, no effects of culture system on the mRNA expression patterns of BAX, BCL-XL and HSP 70.1 could be observed. These data show that expression of XIAP transcripts in expanded blastocysts is affected by in vitro culture. These findings add to the list of bovine genes aberrantly expressed in culture conditions, but do not support the hypothesis that maternal embryonic transition is critical in inducing the aberrations in gene expression patterns studied here.


2009 ◽  
Vol 21 (1) ◽  
pp. 160
Author(s):  
L. Nasser ◽  
P. Stranieri ◽  
A. Gutiérrez-Adán ◽  
M. Clemente ◽  
L. Jorge de Souza ◽  
...  

Brazil is a leading country in the world of commercial use of in vitro-produced bovine embryos with 200 000 transfers per year. The majority of in vitro-produced embryos are pure breed Nelore and are transferred fresh with 40% pregnancy rate. However, pregnancies are drastically reduced with frozen in vitro embryos. This experiment is part of our effort to learn more about molecular composition and morphology of in vitro-derived embryos that may be responsible for such discrepancy. We examined molecular expression of mRNA transcripts of 6 selected genes; apoptosis Bax,TP53(p53), SHC1SHC(p66), insulin growth factor receptor (IGF2R), stabilization of the plasma membrane PLAC8 and glucose conversion H6PD in in-vivo (control) and in-vitro Nelore and Bos taurus embryos. In vivo embryos were collected from superovulated cows at Day 7. In vitro embryo was produced from oocytes aspirated from live cows. A total of 284 oocytes (4 replicates) were matured and fertilized by standard IVF procedures. Presumptive zygotes were cultured in CR2 medium with 5% BSA in 50 μL drops (25 zygotes per drop) at 39°C under paraffin oil and 5% CO2 in humidified air. Embryos that developed on Days 7 to blastocyst were transferred to recipients, and 10 blastocysts from each replicate were frozen for evaluation of gene expression patterns. Poly(A) mRNA was prepared from 3 groups of pools of 10 in vitro embryos and 10 of control in vivo-derived embryos. The quantification of all gene transcripts was carried out by real-time quantitative RT-PCR using the comparative CT method. Data on mRNA expression were normalized to the endogenous H2a.z and was analyzed by one-way repeated-measures ANOVA. The cleavage rates at Day 2 and number of blastocysts developed at Day 7 were 80.3 ± 3.2 and 42.2 ± 6.4, respectively. The level of expression of IGF2R was significantly (P < 0.05) higher in in vivo-derived embryos than in both groups of in vitro embryos. The expression of all 3 apoptosis genes were lower (P < 0.05) in in vivo than in vitro embryos with exception of p53 gene that was not different between Nelore in vitro and in vivo embryos but was significantly higher (P < 0.05) in Bos taurus in vitro embryos. There was no difference in expression of PLAC8 gene among any tested group of embryos and in expression of H6PD gene between Nelore in vitro and in vivo embryos. We concluded that significant differences in molecular makeup between in vitro and in vivo-derived Nelore embryos exist. Of particular importance seems to be pattern of expression of IGF2R receptor gene known as a good indicator of embryo quality, which promotes proliferation and differentiation. Similarly, higher expression of 2 BAX and p66 genes of apoptosis in in vitro embryos seems to be a further indication of inferior quality of Nelore in vitro-derived embryos that showed to be more profound in Bos taurus in vitro-derived embryos.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1898
Author(s):  
Jun-Lin Song ◽  
Guo-Liang Zhang

(1) Background: Deoxynivalenol (DON) and zearalenone (ZEA) are type B trichothecene mycotoxins that exert serious toxic effects on the reproduction of domestic animals. However, there is little information about the toxicity of mycotoxins on testis development in Equus asinus. This study investigated the biological effects of DON and ZEA exposure on Sertoli cells (SCs) of Equus asinus; (2) Methods: We administered 10 μM and 30 μM DON and ZEA to cells cultured in vitro; (3) Results: The results showed that 10 μM DON exposure remarkably changed pyroptosis-associated genes and that 30 μM ZEA exposure changed inflammation-associated genes in SCs. The mRNA expression of cancer-promoting genes was remarkably upregulated in the cells exposed to DON or 30 μM ZEA; in particular, DON and ZEA remarkably disturbed the expression of androgen and oestrogen secretion-related genes. Furthermore, quantitative RT-PCR, Western blot, and immunofluorescence analyses verified the different expression patterns of related genes in DON- and ZEA-exposed SCs; (4) Conclusions: Collectively, these results illustrated the impact of exposure to different toxins and concrete toxicity on the mRNA expression of SCs from Equus asinus in vitro.


2006 ◽  
Vol 18 (2) ◽  
pp. 231 ◽  
Author(s):  
K. Höffmann ◽  
H. Niemann ◽  
K.-G. Hadeler ◽  
D. Herrmann ◽  
C. Wrenzycki

The effects of in vitro production (IVP) and/or somatic nuclear transfer on mRNA expression patterns have mostly been determined in morulae and blastocysts, i.e. after embryonic genome activation. Comparative data regarding mRNA expression patterns throughout the oviductal phase of pre-implantation development are scarce. Here we studied mRNA expression for genes related to DNA methylation and modification of histones which account for the major epigenetic reprogramming during development. Pertubated epigenetic reprogramming of the genome is a likely cause of developmental abnormalities and epigenetic diseases associated with assisted reproduction technologies. The objective of the present study was to compare mRNA expression of DNA methyltransferases Dnmt1, -3a, and -3b and histone methyltransferases SUV39-h1 and G9a between in vivo-derived bovine embryos and their IVP counterparts using a semiquantitative RT-PCR assay (Wrenzycki et al. 2002 Biol. Reprod. 66, 127-134) employing two embryos for each assay. In vivo-derived embryos were collected from 28 superovulated heifers by endoscopic flushing of oviducts (zygotes to 8-cell stages) (Besenfelder et al. 2001 Theriogenology 55, 837-845) or by uterine flushing (16-cell stages to blastocysts). Endoscopic flushing at different time points after AI (Days 1, 1.5, 2, 3, 4, and 4.5) yielded 31 zygotes; 15 two-cell, 5 three-cell, 13 four-cell, 1 five-cell, 2 six-cell, and 11 eight-cell embryos; 4 degenerated embryos; and 18 unfertilized ova. The recovery rate (corpora lutea counted per recovered embryos) was 58% and 62% for the endoscopic and uterine flushing, respectively. Differences in the relative abundance of each gene transcript between groups were tested using ANOVA with the main effects being origin (in vivo/in vitro) and developmental stage (zygote to blastocyst) and their interactions followed by multiple pairwise comparisons using a Tukey test (P < 0.05). Origin of embryos affected the relative abundance of transcripts for Dnmt1, Dnmt3a, and SUV39-h1, and developmental stage affected the relative abundance of transcripts for Dnmt1, -3a, -3b, SUV39-h1, and G9a. No interactive effects were observed for origin and developmental stage in the relative abundance of all transcripts. The relative abundance of Dnmt1 transcripts differed significantly between in vivo- and in vitro-produced morulae and blastocysts. For Dnmt3a, mRNA differences were determined between in vivo- and in vitro-produced 10-16-cell stages and morulae. Suv39-h1 transcripts differed significantly between in vivo- and in vitro-derived zygotes, 2-cell embryos, 8-cell embryos, 10-16-cell embryos, and blastocysts. The results suggest that IVP alters mRNA expression of genes related to epigenetic modifications very early in development, even before the embryonic genome has been activated.


2020 ◽  
Vol 194 (2) ◽  
pp. 143
Author(s):  
Koichiro Nakajima ◽  
TianXiang Gao ◽  
Kazuhiko Kume ◽  
Hiromitsu Iwata ◽  
Shuichi Hirai ◽  
...  

Endocrinology ◽  
2004 ◽  
Vol 145 (5) ◽  
pp. 2297-2306 ◽  
Author(s):  
M. L. Barreiro ◽  
R. Pineda ◽  
V. M. Navarro ◽  
M. Lopez ◽  
J. S. Suominen ◽  
...  

Abstract Orexins are hypothalamic neuropeptides primarily involved in the regulation of food intake and arousal states. In addition, a role for orexins as central neuroendocrine modulators of reproductive function has recently emerged. Prepro-orexin and orexin type-1 receptor mRNAs have been detected in the rat testis. This raises the possibility of additional peripheral actions of orexins in the control of reproductive axis, which remains so far unexplored. To analyze the biological effects and mechanisms of action of orexins in the male gonad, we evaluated testicular expression of orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R) mRNAs in different experimental settings and the effect of orexin-A on testicular testosterone (T) secretion. Persistent expression of OX1R mRNA was demonstrated in the rat testis throughout postnatal development. In contrast, OX2R transcript was not detected at any developmental stage. Expression of OX1R mRNA persisted after selective elimination of mature Leydig cells and was detected in isolated seminiferous tubules at defined stages of the seminiferous epithelial cycle. In addition, testicular OX1R mRNA expression appeared to be under hormonal regulation; it was reduced by long-term hypophysectomy and partially restored by FSH replacement, whereas down-regulation was observed after exposure to increasing doses of the ligand in vitro. Moreover, OX1R mRNA expression was sensitive to neonatal imprinting by estrogen. Finally, orexin-A, in a dosedependent manner, significantly increased basal, but not human choriogonadotropin-stimulated, T secretion in vitro. A similar stimulatory effect was observed in vivo after intratesticular administration of orexin-A. In conclusion, our present results provide the first evidence for the regulated expression of OX1R mRNA and functional role of orexin-A in the rat testis. Overall, our data are suggestive of a novel site of action of orexins in the control of male reproductive axis.


Zygote ◽  
2003 ◽  
Vol 11 (4) ◽  
pp. 355-360 ◽  
Author(s):  
Sang Hyun Park ◽  
Soo-Bong Park ◽  
Nam-Hyung Kim

Cloning efficiency following somatic cell nuclear transfer is very low. In order to obtain insights into this problem, mRNA expression patterns of early development-related genes in nuclear transferred embryos were compared with those obtained from in vivo and in vitro fertilization. Semiquantitative reverse-transcription polymerase chain reaction assay was used to compare the gene expression of, the cell adhesion protein E-cadherin, interleukin -6, heat-shock protein 70.1 and bos taurus apoptosis regulator box-a (Bax). The relative abundances of glucose transporter-1, E-cadherin and interleukin-6 were significantly (P<0.05) higher in in vitro fertilized morulae than in vivo derived morulae. Transcription of the gene encoding octamer-binding transcription factor 4 was higher in blastocysts obtained from in vivo fertilization than in those from in vivo blastocysts. The transcript for Bax was markedly upregulated in blastocysts derived from in vitro production and nuclear transfer procedures compared with in vivo fertilization. These results suggest that alterations in mRNA expression of early development genes are more associated with in vitro culture condition than the nuclear transfer procedure itself.


2011 ◽  
Vol 440 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Sara G. Vienberg ◽  
Stephan D. Bouman ◽  
Heidi Sørensen ◽  
Carsten E. Stidsen ◽  
Thomas Kjeldsen ◽  
...  

The relative expression patterns of the two IR (insulin receptor) isoforms, +/− exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can be attained. In rats and mice, IR-B is the most prominent isoform in the liver (>95%) and fat (>90%), whereas in muscles IR-A is the dominant isoform (>95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI) for inducing glycogen accumulation (75%) and lipogenesis (130%) than for affecting muscle (45%). For the same blood-glucose-lowering effect upon acute intravenous dosing of mice, INS-B gave a significantly higher degree of IR phosphorylation in liver than HI. These in vitro and in vivo results indicate that insulin analogues with IR-isoform-preferential binding affinity are able to elicit tissue-selective biological responses, depending on IR-A/IR-B expression.


Reproduction ◽  
2002 ◽  
pp. 365-375 ◽  
Author(s):  
HM Knijn ◽  
C Wrenzycki ◽  
PJ Hendriksen ◽  
PL Vos ◽  
D Herrmann ◽  
...  

Bovine embryos produced in vitro differ substantially from embryos produced in vivo in the mRNA expression patterns of genes important for development. Several factors in the in vitro production systems have profound effects on embryonic mRNA expression patterns. The effects of the type of maturation on the expression pattern of genes important for development in blastocysts produced in vitro have not yet been investigated. The aim of the present study was to investigate the effects of various maturational protocols on the relative abundance of a panel of six marker genes, indicative of compaction and cavitation, metabolism, stress susceptibility and RNA processing, in bovine blastocysts produced in vitro. Four groups of blastocysts were analysed by a sensitive semi-quantitative RT-PCR assay. Blastocysts were produced in vitro from oocytes of different origin from: (1) 3-8 mm follicles; (2) preovulatory follicles before the LH surge; and (3) preovulatory follicles 24 h after the LH surge. The first two groups were matured in vitro, whereas the third group had undergone maturation in vivo. A fourth group comprised blastocysts developed entirely in vivo. Expression of glucose transporter 1 was significantly (P < 0.05) higher, and expression of desmocollin 2 and plakophilin tended to be higher (P < 0.1) for in vivo (group 4) compared with in vitro blastocysts (group 1), whereas no differences were found for heat shock protein 70.1, E-cadherin and poly(A) polymerase. Expression of the six transcripts did not differ among blastocysts produced in vitro from oocytes of groups 1, 2 and 3. Results indicate that alterations in the relative abundance of these transcripts in blastocysts produced in vitro cannot primarily be attributed to the origin of the oocyte, but are likely to have been induced by post-maturation or fertilization culture conditions.


Sign in / Sign up

Export Citation Format

Share Document