Relaxin gene expression in the porcine follicle during preovulatory development induced by gonadotrophins

1990 ◽  
Vol 5 (3) ◽  
pp. 211-219 ◽  
Author(s):  
C. A. Bagnell ◽  
W. Tsark ◽  
L. Tashima ◽  
B. R. Downey ◽  
B. K. Tsang ◽  
...  

ABSTRACT Northern analysis was used to identify relaxin gene expression in ovaries of prepubertal pigs primed with pregnant mare's serum gonadotrophin (PMSG) and human chorionic gonadotrophin (hCG). The cellular distribution of relaxin transcript in the developing follicle was localized by in-situ hybridization histochemistry. Three probes complementary to non-overlapping regions of the porcine prorelaxin molecule were used to identify relaxin gene expression in ovarian follicular tissue collected 0, 48, 60, 72 and 84 h after treatment with PMSG/hCG. A 1 kb transcript was detected in ovarian extracts of prepubertal gilts from 48 to 84 h after PMSG stimulation. This corresponds to the molecular size of the relaxin transcript reported in the pregnant sow ovary. Relaxin mRNA levels increased in ovaries from animals 48 through 84 h after PMSG. In-situ hybridization showed that the site of relaxin synthesis was the theca interna layer of the developing follicle. Relaxin mRNA was not observed in other follicular cell types, in small or atretic follicles or in follicles from unstimulated animals. The distribution and relative concentration of relaxin mRNA showed a good correlation with in-vitro production and immunohistochemical localization of relaxin previously reported in the developing pig follicle. The presence of both protein and mRNA for relaxin in the growing follicle supports a role for relaxin as a local regulator of ovarian function.

Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 611-621 ◽  
Author(s):  
S.K. De ◽  
M.T. McMaster ◽  
S.K. Dey ◽  
G.K. Andrews

Oligodeoxyribonucleotide excess solution hybridization, Northern blot and in situ hybridization were used to analyze metallothionein gene expression in mouse decidua and placentae during gestation. Metallothionein (MT) -I and -II mRNA levels were constitutively elevated, 11- and 13-fold, respectively, relative to the adult liver, in the deciduum (D8), and decreased coordinately about 6-fold during the period of development when the deciduum is replaced by the developing placenta (D10-16). Coincident with this decline, levels of MT mRNA increased dramatically in the visceral yolk sac endoderm. In situ hybridization established that MT-I mRNA was present at low levels in the uterine luminal epithelium (D4), but was elevated at the site of embryo implantation exclusively in the primary decidual zone by D5, and then in the secondary decidual zone (D6-8). Although low levels of MT mRNA were detected in total placental RNA, in situ hybridization revealed constitutively high levels in the outer placental spongiotrophoblasts. Analysis of pulse-labeled proteins from decidua and placentae established that these tissues are active in the synthesis of MT. The constitutively high levels of MT mRNA in decidua were only slightly elevated following injection of cadmium (Cd) and/or zinc (Zn), whereas in placentae they increased several-fold. MT mRNA levels were equally high in decidua and experimentally induced deciduomata (D8) which establishes that decidual MT gene expression is not dependent on the presence of the embryo or some embryo-derived factor. Although the functional role of MT during development is speculative, these results establish the concept that, from the time of implantation to late in gestation, the mouse embryo is surrounded by cells, interposed between the maternal and embryonic environments, which actively express the MT genes. This suggests that MT plays an important role in the establishment and maintenance of normal pregnancy.


1995 ◽  
Vol 145 (2) ◽  
pp. 343-353 ◽  
Author(s):  
K Reiprich ◽  
E Mühlbauer ◽  
E Decuypere ◽  
R Grossmann

Abstract In this study both sexes of two strains of chicken with genetically different growth potentials (broiler- and laying-type) were used to investigate growth hormone (GH) gene expression during posthatch development from day 7 (D7) to D56 by using the in situ hybridization technique and Northern analysis. In pituitaries of both strains a high GH mRNA signal was found as early as D7 by in situ hybridization, showing clear differences in the pattern of gene expression between the two strains. By Northern hybridization sex differences were detectable in all age groups of broilers, with higher levels throughout in males. In layers, however, females showed consistently higher levels compared with males until D21. While signal intensities decreased in the broiler strain during the investigation period, the layer-type strain seemed to express GH mRNA more continuously, reaching significantly (P<0·01) higher GH mRNA levels than broilers at D56. Plasma GH concentrations ran parallel to GH mRNA in early stages but showed a peak earlier at D14 and decreased after D35 in both sexes and strains. Determination of growth as weekly weight gains, however, proved that a period of rapid growth (at a higher level in both sexes of the broiler strain) at D7 was followed by a strong decrease from D14 to D21. A plateau of constant growth was reached until the end of the observation period with similar rates in both strains and sexes. Analysis of plasma thyroid hormones tri-iodothyronine/thyroxine (T3/T4) showed an increase in T3 concentrations in both strains and sexes in early stages and a decrease thereafter. No clear strain differences were measured. T4 plasma concentrations increased from D7 to D14 in broilers and D21 in layers when a plateau was reached. From the results we conclude that generally there is a good correlation between GH mRNA and plasma GH concentrations in both strains investigated. Neither parameter, however, is coupled directly with the growth rate. Thus the early rapid growth corresponds to relatively low levels of GH mRNA and plasma GH concentrations, but high T3 levels. Later, decreased growth rates are linked to increasing amounts of GH mRNA as well as increasing plasma GH concentrations in both layers and broilers. Towards the end of the observation period there was a strain divergence visible with increased amounts of GH mRNA in layers but a strong reduction in broilers. Moreover, plasma GH concentrations decreased more slowly in layers than in broilers. Journal of Endocrinology (1995) 145, 343–353


2004 ◽  
Vol 23 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Danijela Drakulic ◽  
Milena Stevanovic ◽  
Gordana Nikcevic

RNA-RNA in situ hybridization is a reliable method for studying tissue and cell specific gene expression, which enables visualization of labeled antisense RNA probe hybridized to specific mRNA. In this study we employed non-radioactive RNA-RNA in situ hybridization using biotin- or digoxigenin-labeled RNA probes in order to detect SOX gene expression in carcinoma cell lines. By this approach we confirmed results obtained by Northern blot analysis, where the presence of SOX2 mRNA in NT2/D1 and SOX14 mRNA in HepG2 cells has been established. Our aim was to set up RNA-RNA in situ hybridization method in in vitro cultured cells in order to perform further analyses of SOX gene expression on various normal and cancer tissues.


1994 ◽  
Vol 267 (4) ◽  
pp. F679-F687 ◽  
Author(s):  
C. Pupilli ◽  
M. Brunori ◽  
N. Misciglia ◽  
C. Selli ◽  
L. Ianni ◽  
...  

To investigate the presence and the distribution of preproendothelin-1 (prepro-ET-1) mRNA in human kidney, eight human kidneys obtained at surgery from patients affected by localized renal tumors were studied. Northern blot analysis using a human prepro-ET-1 cDNA probe labeled with 32P showed the presence of a single band of approximately 2.3 kb that was present both in the renal cortex and medulla of all the kidneys studied. Densitometric analysis of hybridization signals demonstrated that prepro-ET-1 mRNA levels in the renal medulla were 2.2-fold higher than those in the renal cortex. The distribution of prepro-ET-1 mRNA in human kidney was investigated by in situ hybridization using a human prepro-ET-1 RNA probe labeled with 35S. The greatest density of prepro-ET-1 mRNA was observed in the renal medulla, where hybridization signal was demonstrated in vasa recta bundles and capillaries and in collecting ducts. By combining in situ hybridization with immunohistochemical detection of von Willebrand factor, we demonstrated that 93 +/- 2.5% of nontubular medullary cells containing prepro-ET-1 mRNA were endothelial cells. In the cortex, prepro-ET-1 mRNA was localized in the endothelial layer of arcuate and interlobular arteries and veins and in the endothelial cells of afferent arterioles. The results of the present study demonstrate that ET-1 gene expression is present in vascular and tubular structures of the human kidney. It is possible that ET-1 synthesized locally in the human kidney represents a local system affecting renal hemodynamics and functions through paracrine and/or autocrine actions on different renal structures.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2678
Author(s):  
Judit Vágó ◽  
Katalin Kiss ◽  
Edina Karanyicz ◽  
Roland Takács ◽  
Csaba Matta ◽  
...  

We investigated the gene expression pattern of selected enzymes involved in DNA methylation and the effects of the DNA methylation inhibitor 5-azacytidine during in vitro and in vivo cartilage formation. Based on the data of a PCR array performed on chondrifying BMP2-overexpressing C3H10T1/2 cells, the relative expressions of Tet1 (tet methylcytosine dioxygenase 1), Dnmt3a (DNA methyltransferase 3), and Ogt (O-linked N-acetylglucosamine transferase) were further examined with RT-qPCR in murine cell line-based and primary chondrifying micromass cultures. We found very strong but gradually decreasing expression of Tet1 throughout the entire course of in vitro cartilage differentiation along with strong signals in the cartilaginous embryonic skeleton using specific RNA probes for in situ hybridization on frozen sections of 15-day-old mouse embryos. Dnmt3a and Ogt expressions did not show significant changes with RT-qPCR and gave weak in situ hybridization signals. The DNA methylation inhibitor 5-azacytidine reduced cartilage-specific gene expression and cartilage formation when applied during the early stages of chondrogenesis. In contrast, it had a stimulatory effect when added to differentiated chondrocytes, and quantitative methylation-specific PCR proved that the DNA methylation pattern of key chondrogenic marker genes was altered by the treatment. Our results indicate that the DNA demethylation inducing Tet1 plays a significant role during chondrogenesis, and inhibition of DNA methylation exerts distinct effects in different phases of in vitro cartilage formation.


1992 ◽  
Vol 135 (1) ◽  
pp. 53-NP ◽  
Author(s):  
R. Benediktsson ◽  
J. L. W. Yau ◽  
S. Low ◽  
L. P. Brett ◽  
B. E. Cooke ◽  
...  

ABSTRACT The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) catalyses the conversion of physiological glucocorticoids to inactive products, thus modifying the access of glucocorticoids to glucocorticoid and mineralocorticoid receptors. Glucocorticoids may affect ovarian function both indirectly and via binding to ovarian receptors. We have demonstrated 11β-HSD bioactivity and mRNA expression in rat ovary in vitro. The enzyme was localized to oocytes and luteal bodies immunohistochemically using two antibodies raised against purified rat liver 11β-HSD. These data are supported by in-situ hybridization studies, which also localized 11β-HSD mRNA expression to oocytes and luteal bodies. The results suggest that 11β-HSD may modulate the effects of glucocorticoid on ovarian function. Journal of Endocrinology (1992) 135, 53–58


2000 ◽  
Vol 182 (10) ◽  
pp. 2680-2686 ◽  
Author(s):  
Tim Tolker-Nielsen ◽  
Allan Beck Christensen ◽  
Kim Holmstrøm ◽  
Leo Eberl ◽  
Thomas Bovbjerg Rasmussen ◽  
...  

ABSTRACT We reported previously that artificial overexpression of theflhDC operon in liquid-grown Serratia liquefaciens resulted in the formation of filamentous, multinucleated, and hyperflagellated cells that were indistinguishable from surface-induced swarm cells (L. Eberl, G. Christiansen, S. Molin, and M. Givskov, J. Bacteriol. 178:554–559, 1996). In the present report we show by means of reporter gene measurements, Northern analysis, and in situ reverse transcription-PCR that the amount offlhDC mRNA in surface-grown swarm cells does not exceed the maximum level found in nondifferentiated, vegetative cells. This suggests that surface-induced S. liquefaciens swarm cell differentiation, although dependent on flhDC gene expression, does not occur through elevated flhDC mRNA levels.


1993 ◽  
Vol 10 (1) ◽  
pp. 87-97 ◽  
Author(s):  
C A Bagnell ◽  
Q Zhang ◽  
K Ohleth ◽  
M L Connor ◽  
B R Downey ◽  
...  

ABSTRACT Northern analysis and in-situ hybridization were used to follow the development of relaxin gene expression in the newly forming corpus luteum (CL) after ovulation and throughout luteal development. Alkaline phosphatase (AP) was used as a marker of theca-derived lutein cells and the relationship between AP-positive and relaxin mRNA-containing cells was assessed. Ovaries from prepubertal pigs treated with pregnant mares serum gonadotrophin (PMSG)/human chorionic gonadotrophin (hCG) were collected during the periovulatory period and at various times during 19 days after ovulation. In addition, CL from cyclic pigs on days 10 and 16 were used to monitor relaxin gene expression in small and large luteal cells. Northern analysis revealed that relaxin gene expression increased with CL development in the PMSG/hCG-treated pig, reaching maximal levels at around day 14 post-ovulation. Thereafter, as the CL regressed, the level of relaxin mRNA declined. In CL from cyclic pigs at day 10 of the cycle, only small luteal cells expressed relaxin mRNA. However, by day 16 of the cycle, large luteal cells were the source of relaxin gene expression. In-situ hybridization studies revealed that in the early CL (up to 30 h post-ovulation), the relaxin gene transcript was observed in cells along the margins of the CL and in the core of the infolding follicle wall corresponding to the AP-positive, luteinized theca cell layer. As luteinization progressed, the theca and granulosa cell layers could no longer be distinguished morphologically (from 54 h after ovulation until day 9). However, the pattern of relaxin hybridization persisted along the periphery in bands of cells penetrating the CL, and coincided with areas of AP staining, indicating that the theca lutein cells were the site of relaxin gene expression. At day 14, relaxin hybridization and AP staining were distributed throughout the luteal tissue. With CL regression both AP staining and relaxin hybridization declined. This pattern of relaxin hybridization in the CL of the gonadotrophin-primed pig was identical to that observed in cyclic pigs on days 10 and 16 of the cycle. These findings indicate that theca interna cells retain their ability to express the relaxin gene following ovulation and luteinization. In the early CL, the small theca-derived lutein cells are the source of relaxin transcript. However, as the CL becomes fully differentiated, the large granulosa-derived lutein cells acquire the capacity to express the relaxin message.


1992 ◽  
Vol 262 (1) ◽  
pp. G123-G130 ◽  
Author(s):  
P. G. Traber ◽  
L. Yu ◽  
G. D. Wu ◽  
T. A. Judge

The mucosal lining of the small intestine is a complex epithelium that is continually renewed by division of a stem cell population located in intestinal crypts, migration of daughter cells along the villus, and, finally, extrusion of senescent cells into the lumen. The majority of cells in both crypt and villus cell compartments are enterocytes that acquire differentiated functions as they migrate out of the crypt. Sucrase-isomaltase (SI) is an enterocyte-specific, brush-border enzyme that has little activity in crypt cells and maximal activity in low and mid villus cells. The mechanism by which enterocytes acquire SI enzymatic activity as they move from crypt to villus is controversial. In this study we examined the distribution of SI mRNA along the crypt-villus axis of human small intestine using isolated epithelial cells and in situ hybridization. A complementary DNA to the 5' portion of the human SI mRNA was amplified and cloned using the polymerase chain reaction. Hybridization analysis of RNA extracted from human intestinal epithelial cells showed that the cloned cDNA recognized a single 6.5-kb mRNA. In situ hybridization of duodenal biopsy specimens was performed using a single-stranded RNA probe derived from this cDNA. This analysis showed that there was little SI mRNA in crypt cells and appearance of mRNA in enterocytes located at the crypt-villus junction. The mRNA levels were maximal in lower and mid villus cells with decreased levels noted in villus tip cells. These results are identical to those previously described in rat intestine and suggest that expression of the SI gene as enterocytes emerge from intestinal crypts is regulated primarily at the level of mRNA accumulation. Study of SI gene regulation may provide a useful model to investigate the mechanisms that regulate enterocyte-specific gene expression and intestinal differentiation.


Sign in / Sign up

Export Citation Format

Share Document