scholarly journals mRNA expression profiles for corticotrophin-releasing hormone, urocortin, CRH-binding protein and CRH receptors in human term gestational tissues determined by real-time quantitative RT-PCR

2004 ◽  
Vol 32 (2) ◽  
pp. 339-348 ◽  
Author(s):  
B Sehringer ◽  
HP Zahradnik ◽  
M Simon ◽  
R Ziegler ◽  
C Noethling ◽  
...  

Increasing maternal plasma levels of corticotrophin-releasing hormone (CRH) during the last weeks of pregnancy suggest that this stress hormone plays an important role in the control of human parturition. Little is known about the quantitative contribution of gestational tissues (other than placenta) to intrauterine formation of CRH, urocortin and CRH-binding protein (CRH-BP), or about the distribution of CRH receptors within the uterus. We have investigated the mRNA expression of CRH, urocortin, CRH-BP and CRH receptors 1 and 2 (CRH-R1 and -R2) in gestational tissues by real-time RT-PCR. Placenta, myometrium and choriodecidua were collected after uncomplicated pregnancies at term, before the onset of labour. Distribution of CRH-R1 and CRH-R2 protein was also investigated by immunostaining with receptor subtype-specific antibodies. The placenta was identified as the main site of CRH and CRH-BP mRNA expression, displaying mRNA levels >1000 and >20 times higher than those found in the myometrium and choriodecidua respectively (P<0.05 in each case). mRNA expression of urocortin was low in all tissues investigated. Myometrium and choriodecidua expressed relevant amounts of both receptor subtypes, whereas the CRH receptor population in placenta consisted mainly of CRH-R2. The high expression of CRH in placenta and the substantial expression of CRH receptors in choriodecidua and myometrium suggested that CRH derived from placenta exerts direct or indirect actions on these tissues. Neither CRH produced by myometrium or choriodecidua nor urocortin from other intrauterine sources seem to play a major role in the control of labour.

2008 ◽  
Vol 52 (No. 6) ◽  
pp. 231-244 ◽  
Author(s):  
C. Werner-Misof ◽  
M.W. Pfaffl ◽  
R.M. Bruckmaier

The immune response in milk cells and the status of mammary tight junctions (TJ) in response to intramammary (IM) infusion of different doses of <i>Escherichia col</i>i lipopolysaccharide (LPS) was investigated. <i>Experiment I</i>: Seven German Braunvieh cows were IM infused into one quarter with 1 &mu;g (LPS-1) and 3 &mu;g (LPS-3) of LPS, respectively, and the contralateral control quarter with saline (9 g/l; C). Milk samples were taken immediately before and 12, 24, 36, 48, 60, 84 and 108 h after infusion and analysed for somatic cell counts (SCC), lactose, sodium (Na) and chloride (Cl) ions, and electrical conductivity (EC). Milk cell mRNA expression of various inflammatory factors was quantified by real-time RT-PCR. Blood samples were taken immediately after milking for the analysis of leukocytes (WBC), polymorphonuclear neutrophils (PMN), Na and Cl. Milk SCC, lactose, Na, Cl and EC did not differ significantly between LPS-1 and C quarters after the challenge. In LPS-3 quarters SCC levels increased within the first 12 h, reached peak levels between 12 and 36 h (<i>P</i> &le; 0.001) and decreased (<i>P</i> &le; 0.05) thereafter to reach baseline at 108 hours. Lactose in LPS-3 quarters decreased (<i>P</i> &le; 0.05) to a minimum at 24 h and increased slightly thereafter while EC, Na, and Cl increased transiently in response to LPS-3. WBC and PMN levels in both groups decreased numerically within 24 h after LPS administration. In LPS-1, WBC at 24, 48 and 108 h were significantly lower whereas in LPS-3 they were significantly higher than at time 0. TNF&alpha;-mRNA expression in both groups did not change in response to IM LPS-challenge. IL-1&beta;-mRNA expression at 12, 24 and 36 h in LPS-1 quarters increased significantly as compared to time 0. In LPS-3 quarters the mRNA expression values of all tested ILs increased significantly as compared to time 0 within 12 h after LPS-challenge. IL-1&beta;-mRNA expression decreased (<i>P</i> &le; 0.05) at 48 and 84 h in LPS quarters. IL-8 mRNA was significantly decreased at 84 h after challenge in LPS-3 quarters. COX-2-mRNA expression in LPS-1 quarters decreased significantly as compared to time 0 at 48, 84 and 108 h, with a minimum at 84 h (<i>P</i> &le; 0.05). In LPS-3 quarters COX-2-mRNA levels increased (<i>P</i> &le; 0.05) within 48 h after the LPS-challenge. <i>Experiment II</i>: Six cows (5 German Braunvieh, 1 Brown Swiss) were injected in one quarter with 100 &mu;g LPS and in the contralateral quarter with saline (9 g/l; C). Mammary biopsy samples of both quarters were taken immediately before and at 3, 6, 9 and 12 h after infusion and mRNA expression of TJ proteins occludin (OCLN) and zonula occludens (ZO-) 1, 2 and 3 were quantified by real-time RT-PCR. OCLN-mRNA expression did not change in response to the IM infusion while that of ZO-1, ZO-2 and ZO-3 decreased significantly within six hours. In conclusion, a dose of 1 &mu;g LPS did not initiate a immune response in the mammary gland. Furthermore the dose of 100 &mu;g of LPS enhanced TJ permeability by reducing TJ plaque proteins density.


2004 ◽  
Vol 52 (4) ◽  
pp. 389-402 ◽  
Author(s):  
P. Van As ◽  
C. Careghi ◽  
V. Bruggeman ◽  
O. M. Onagbesan ◽  
S. Van der Geyten ◽  
...  

Pit-1 is a pituitary-specific POU-domain DNA binding factor, which binds to and trans-activates promoters of growth hormone- (GH), prolactin- (PRL) and thyroid stimulating hormone beta- (TSHβ) encoding genes. Pit-1 has been identified in several mammalian and avian species. Thyrotropin-releasing hormone (TRH) is located in the hypothalamus and it stimulates TSH, GH and PRL release from the pituitary gland. In the present study, we successfully developed a competitive RT-PCR for the detection of Pit-1 expression in the chicken pituitary, that was sensitive enough to detect picogram levels of Pit-1 mRNA. Applying this method, the effect of TRH injections on Pit-1 mRNA expression was determined in the pituitary of chick embryos and growing chicks. In both 18-day-old embryos and 10-day-old male chicks the Pit-1 mRNA expression was significantly increased following TRH injection, thereby indicating that the stimulatory effects of TRH on several pituitary hormones is mediated via its effect on Pit-1 expression. Therefore, a semi-quantitative RT-PCR method was used to detect possible changes in GH levels. TRH affected the GH mRNA levels at both developmental stages. These results, combined with the data on Pit-1 mRNA expression, indicate that Pit-1 has a role in mediating the stimulatory effects of TRH on pituitary hormones like GH.


2001 ◽  
Vol 169 (2) ◽  
pp. 361-371 ◽  
Author(s):  
C Roth ◽  
M Schricker ◽  
M Lakomek ◽  
A Strege ◽  
I Heiden ◽  
...  

To address whether gonadotropin-releasing hormone (GnRH) regulates its own expression and the expression of its receptor in the hypothalamus and ovary, we treated five groups of prepubertal/peripubertal female rats from postnatal days 25-36 with either the GnRH agonist triptorelin (TRIP) or the GnRH antagonist cetrorelix (CET), each 10 or 100 microgram/day, or a placebo. We compared their effects regarding pubertal development, serum gonadotropins and the expression of GnRH and GnRH-receptor in the hypothalamus, pituitary, ovary and uterus. Onset of puberty was determined by vaginal opening, and expression levels of GnRH and GnRH-receptor were determined using either quantitative real-time PCR or competitive RT-PCR. Onset of puberty was retarded by both analogs but CET (100 microgram/day) inhibited while TRIP (10 and 100 microgram/day) stimulated serum gonadotropins (P<0.05). The expression of GnRH in the preoptic area did not show significant differences among the treatment groups but ovarian GnRH mRNA levels were significantly stimulated by CET (100 microgram/day). GnRH mRNA could not be detected in the uterus by either real-time PCR or competetive RT-PCR. The GnRH-receptor expression in the hypothalamus (preoptic area and mediobasal hypothalamus) did not vary among any of the groups, whereas in the pituitary GnRH-receptor mRNA levels were stimulated by TRIP (10 microgram/day) but inhibited by CET (100 microgram/day). In contrast, in the ovary GnRH-receptor mRNA levels were inhibited by both TRIP (100 microgram/day) and CET (100 microgram/day). Interestingly, the GnRH-receptor was even expressed in the uterus where it was strongly stimulated by both CET and TRIP in a dose-related manner. This shows that in addition to their different pituitary effects, the GnRH analogs cetrorelix and triptorelin exert different actions at the hypothalamic, ovarian and uterine level. This study also demonstrates an organ-specific regulation of GnRH and GnRH-receptor gene expression which is likely part of a local autoregulatory system. We conclude that the ovarian and uterine effects of GnRH analogs must be considered in addition to their known pituitary effects when deciding which GnRH analog is most suitable for treating precocious puberty.


2006 ◽  
Vol 18 (2) ◽  
pp. 235
Author(s):  
S.-E. Lee ◽  
X.-Y. Li ◽  
X.-S. Cui ◽  
N.-H. Kim

Despite clear evidence of regulation of mitochondrial respiration by nuclear encoded genes, cytochrome oxidase (Cox), little information is available on their expression and functional roles during early embryonic development. To examine the role of Cox in oocyte maturation and embryogenesis, we first characterized mRNA and protein levels of nuclear encoded genes, Cox 5a, 5b, and 6b1, in mouse oocytes and during early embryogenesis, using real-time RT-PCR and immunocytochemistry. We then examined the possible role of these genes in oocyte maturation and pre-implantation development using RNA interference analysis. The relative abundances of Cox 5a, 5b, and 6b1 transcripts was measured by real time RT-PCR. After normalization by comparison to histone H2a mRNA levels, the mRNA expression of Cox 5a, 5b, and 6b1 were found to be considerable in mature oocytes and zygotes, but reduced slightly in 2-cell embryos. From the 2-cell to the blastocyst stage, mRNA expression is dependent on the number of blastomeres, as expression increases only gradually with development. Immunocytochemical studies revealed that Cox 5a, 5b, and 6b1 proteins were expressed in all blastomeres of the blastocyst. Injection of Cox 5a, 5b, or 6b1 siRNA into GV stage oocytes decreased expression of the target mRNA specifically, while not affecting the expression of mRNAs for the other subunits in mature oocytes. Similarly, each siRNA injection into zygotes specifically reduced target mRNA expression at the 2-cell, morula and blastocyst stages (P < 0.05). Silencing of mRNA expression by RNA interference (siRNA) did not inhibit oocyte maturation or developmental events up to the morula and blastocyst stages. The expression level of mtDNA9, as well as overall levels of mitochondrial mRNAs, was not different following injection of siRNA for Cox 5a, 5b, or 6b1. However, it is evident that the number of mitochondria in siRNA treated blastocysts was greatly reduced, and they appeared to be morphologically abnormal. Significantly higher apoptosis and lower cell numbers were observed in siRNA treated blastocysts. Real time RT PCR revealed that silencing of Cox 5a, 5b, and 6b1 decreased mRNA and protein levels of E-cadherin. These results suggest that the Cox subunits, Cox 5a, 5b, and 6b1, play an important role in mitochondrial function during pre-implantation development. This work was funded by a grant from the National Research Laboratory Program in Korea.


Author(s):  
Yan Luo ◽  
Yuedi Tang ◽  
Qingjie Xia ◽  
Jin Liu

AbstractEndothelin (ET), originally characterized as a vasoconstrictive peptide, has been found to have many different biological functions, including acting as a local hormonal regulator of pressure, fluid, ions and neurotransmitters in the inner ear. The objective of this study was to examine and quantify the mRNA expression of the endothelin type A and B receptors (ETAR and ETBR) in the strial vascularies (StV) and non-strial tissues (NSt) of the cochlear lateral wall using the real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) technique. The mouse tissue samples were harvested and RNA was extracted. RT was performed to obtain cDNA, and then the mRNA expression of each gene was measured via real-time PCR. We found that both receptor subtypes were expressed in the cochlear lateral wall, with a predominance of ETAR over ETBR. We showed that the mRNA expression of the two receptor subtypes was higher in the StV with a 1.8 times higher level of ETAR and an 8.1 times higher level of ETBR mRNAs than in the adjacent NSt of the lateral wall tissue. This study shows the existence and the quantity of ET receptor subtypes in the StV and NSt of the mouse cochlea. Our results suggest that an endothelin-mediated response via two different receptors, ETAR and ETBR, may play an important role in the physiological functions of the cochlear lateral wall by maintaining the homeostatic environment of the cochlea.


2005 ◽  
Vol 90 (9) ◽  
pp. 5393-5400 ◽  
Author(s):  
Rosa Sirianni ◽  
Bobbie A. Mayhew ◽  
Bruce R. Carr ◽  
C. Richard Parker ◽  
William E. Rainey

Abstract Context: Near term, the human fetal adrenal increases the production of cortisol and dehydroepiandrosterone sulfate (DHEAS). DHEAS, which acts as substrate for placental estrogen production, induces key changes involved in parturition. Objective: The objective of this study was to determine quantitatively the effect of CRH on mRNA levels of enzymes needed for DHEAS production (steroidogenic acute regulatory protein, CYP11A, CYP17, and SULT2A1), to determine the CRH receptor (CRH-R) subtype(s) responsible for CRH action, and to determine the effect of CRH on CRH-R mRNA expression in human adrenal fetal zone (FZ) cells. Design: Human adrenal FZ cells were treated with CRH, ACTH, urocortin (Unc), and CRH antagonists, and RNA was analyzed by microarray and real-time RT-PCR. Setting: This study was performed at an academic research laboratory. Main Outcome Measure: The main outcome measure was the expression of steroidogenic enzymes and CRH-R. Results: Microarray analysis of human FZ cells treated for 24 h with CRH or ACTH showed increased mRNA expression levels of the genes needed for DHEAS production. Real-time RT-PCR analysis confirmed these data. Induction was lost in the presence of CRH-R1 antagonists, but not CRH-R2 antagonists. Stimulation was reproduced by Unc. The CRH-R1α mRNA splice variant was the only type 1 receptor isoform expressed in the fetal adrenal, and treatment with CRH up-regulates its mRNA levels. Conclusions: CRH, Unc, and ACTH stimulate all elements of the DHEAS synthetic pathway and activate CRH-R1 as well. The resulting increased DHEAS levels can be used for placental estrogen synthesis and contribute to the process leading to parturition in humans.


2002 ◽  
pp. 795-802 ◽  
Author(s):  
F Fallo ◽  
V Pezzi ◽  
L Barzon ◽  
P Mulatero ◽  
F Veglio ◽  
...  

BACKGROUND: The presence and pathophysiological role of CYP11B1 (11beta-hydroxylase) gene in the zona glomerulosa of human adrenal cortex is still controversial. METHODS: In order to specifically quantify CYP11B1, CYP11B2 (aldosterone synthase) and CYP17(17alpha-hydroxylase) mRNA levels, we developed a real-time RT-PCR assay and examined the expression in a series of adrenal tIssues, including six normal adrenals from patients adrenalectomized for renal cancer and twelve aldosterone-producing adenomas (APA) from patients with primary aldosteronism. RESULTS: CYP11B1 mRNA levels were clearly detected in normal adrenals, which comprised both zona glomerulosa and fasciculata/reticularis cells, but were also measured at a lower range (P<0.05) in APA. The levels of CYP11B2 mRNA were lower (P<0.005) in normal adrenals than in APA. CYP17 mRNAlevels were similar in normal adrenals and in APA. In patients with APA, CYP11B2 and CYP11B1 mRNA levels were not correlated either with basal aldosterone or with the change from basal aldosterone in response to posture or to dexamethasone. No correlation between CYP11B1 mRNA or CYP11B2 mRNA and the percentage of zona fasciculata-like cells was observed in APA. CONCLUSIONS: Real-time RT-PCR can be reliably used to quantify CYP11B1 and CYP11B2 mRNA levels in adrenal tIssues. Expression of CYP11B1 in hyperfunctioning zona glomerulosa suggests an additional formation of corticosterone via 11beta-hydroxylase, providing further substrate for aldosterone biosynthesis. CYP11B1 and CYP11B2 mRNA levels in APA are not related to the in vivo secretory activity of glomerulosa cells, where post-transcriptional factors might ultimately regulate aldosterone production.


2000 ◽  
Vol 84 (4) ◽  
pp. 1934-1941 ◽  
Author(s):  
Rainer Haberberger ◽  
Reas Scholz ◽  
Wolfgang Kummer ◽  
Michaela Kress

Multiple muscarinic receptor subtypes are present on sensory neurons that may be involved in the modulation of nociception. In this study we focused on the presence of the muscarinic receptor subtypes, M2 and M3 (M2R, M3R), in adult rat lumbar dorsal root ganglia (DRG) at the functional ([Ca2+]i measurement), transcriptional (RT-PCR), and translational level (immunohistochemistry). After 1 day in culture exposure of dissociated medium-sized neurons (20–35 μm diam) to muscarine was followed by rises in [Ca2+]i in 76% of the neurons. The [Ca2+]i increase was absent after removal of extracellular calcium and did not desensitize after repetitive application of the agonist. This rise in [Ca2+]i may be explained by the expression of M3R, which can induce release of calcium from internal stores via inositoltrisphospate. Indeed the effect was antagonized by the muscarinic receptor antagonist atropine as well as by the M3R antagonist, 4-diphenylacetoxy-N-(2 chloroethyl)-piperidine hydrochloride (4-DAMP). The pharmacological identification of M3R was corroborated by RT-PCR of total RNA and single-cell RT-PCR, which revealed the presence of mRNA for M3R in lumbar DRG and in single sensory neurons. In addition, RT-PCR also revealed the expression of M2R, which did not seem to contribute to the calcium changes since it was not prevented by the M2 receptor antagonist, gallamine. Immunohistochemistry demonstrated the presence of M2R and M3R in medium-sized lumbar DRG neurons that also coexpressed binding sites for the lectin I-B4, a marker for mainly cutaneous nociceptors. The occurrence of muscarinic receptors in putative nociceptive I-B4-positive neurons suggests the involvement of these acetylcholine receptors in the modulation of processing of nociceptive stimuli.


Sign in / Sign up

Export Citation Format

Share Document