gestational tissues
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 13)

H-INDEX

26
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaurav Bhatti ◽  
Roberto Romero ◽  
Nardhy Gomez-Lopez ◽  
Tinnakorn Chaiworapongsa ◽  
Eunjung Jung ◽  
...  

AbstractThe cell-free transcriptome in amniotic fluid (AF) has been shown to be informative of physiologic and pathologic processes in pregnancy; however, the change in AF proteome with gestational age has mostly been studied by targeted approaches. The objective of this study was to describe the gestational age-dependent changes in the AF proteome during normal pregnancy by using an omics platform. The abundance of 1310 proteins was measured on a high-throughput aptamer-based proteomics platform in AF samples collected from women during midtrimester (16–24 weeks of gestation, n = 15) and at term without labor (37–42 weeks of gestation, n = 13). Only pregnancies without obstetrical complications were included in the study. Almost 25% (320) of AF proteins significantly changed in abundance between the midtrimester and term gestation. Of these, 154 (48.1%) proteins increased, and 166 (51.9%) decreased in abundance at term compared to midtrimester. Tissue-specific signatures of the trachea, salivary glands, brain regions, and immune system were increased while those of the gestational tissues (uterus, placenta, and ovary), cardiac myocytes, and fetal liver were decreased at term compared to midtrimester. The changes in AF protein abundance were correlated with those previously reported in the cell-free AF transcriptome. Intersecting gestational age-modulated AF proteins and their corresponding mRNAs previously reported in the maternal blood identified neutrophil-related protein/mRNA pairs that were modulated in the same direction. The first study to utilize an aptamer-based assay to profile the AF proteome modulation with gestational age, it reveals that almost one-quarter of the proteins are modulated as gestation advances, which is more than twice the fraction of altered plasma proteins (~ 10%). The results reported herein have implications for future studies focused on discovering biomarkers to predict, monitor, and diagnose obstetrical diseases.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1061
Author(s):  
Ourlad Alzeus G. Tantengco ◽  
Lauren Richardson ◽  
Alan Lee ◽  
Ananthkumar Kammala ◽  
Mariana de Castro de Castro Silva ◽  
...  

Introduction: Immune homeostasis of the intrauterine cavity is vital for pregnancy maintenance. At term or preterm, fetal and maternal tissue inflammation contributes to the onset of labor. Though multiple immune-modulating molecules are known, human leukocyte antigen (HLA)-G is unique to gestational tissues and contributes to maternal–fetal immune tolerance. Several reports on HLA-G’s role exist; however, ambiguity exists regarding its functional contributions during pregnancy and parturition. To fill these knowledge gaps, a systematic review (SR) of the literature was conducted to better understand the expression, localization, function, and regulation of HLA-G during pregnancy and parturition. Methods: A SR of the literature on HLA-G expression and function reported in reproductive tissues during pregnancy, published between 1976–2020 in English, using three electronic databases (SCOPE, Medline, and ClinicalTrials.gov) was conducted. The selection of studies, data extraction, and quality assessment were performed in duplicate by two independent reviewers. Manuscripts were separated into three categories: 1) expression and localization of HLA-G, 2) regulators of HLA-G, and 3) the mechanistic roles of HAL-G. Data were extracted, analyzed, and summarized. Results: The literature search yielded 2554 citations, 117 of which were selected for full-text evaluation, and 115 were included for the final review based on our inclusion/exclusion criteria. HLA-G expression and function were mostly studied in placental tissue and/or cells and peripheral blood immune cells, while only 13% of the studies reported data on amniotic fluid/cord blood and fetal membranes. Measurements of soluble and membranous HLA-G were determined mostly by RNA-based methods and protein by immunostaining, Western blot, or flow cytometric analyses. HLA-G was reported to regulate inflammation and inhibit immune-cell-mediated cytotoxicity and trophoblast invasion. Clinically, downregulation of HLA-G is reported to be associated with poor placentation in preeclampsia and immune cell infiltration during ascending infection. Conclusions: This SR identified several reports supporting the hypothesized role of immune regulation in gestational tissues during pregnancy. A lack of rigor and reproducibility in the experimental approaches and models in several reports make it difficult to fully elucidate the mechanisms of action of HLA-G in immune tolerance during pregnancy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francisca Bravo-Risi ◽  
Paulina Soto ◽  
Thomas Eckland ◽  
Robert Dittmar ◽  
Santiago Ramírez ◽  
...  

AbstractChronic wasting disease (CWD) is a prevalent prion disease affecting cervids. CWD is thought to be transmitted through direct animal contact or by indirect exposure to contaminated environmental fomites. Other mechanisms of propagation such as vertical and maternal transmissions have also been suggested using naturally and experimentally infected animals. Here, we describe the detection of CWD prions in naturally-infected, farmed white-tailed deer (WTD) fetal tissues using the Protein Misfolding Cyclic Amplification (PMCA) technique. Prion seeding activity was identified in a variety of gestational and fetal tissues. Future studies should demonstrate if prions present in fetuses are at sufficient quantities to cause CWD after birth. This data confirms previous findings in other animal species and furthers vertical transmission as a relevant mechanism of CWD dissemination.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenjing Ding ◽  
Stephen Siu Chung Chim ◽  
Chi Chiu Wang ◽  
Caitlyn So Ling Lau ◽  
Tak Yeung Leung

Objective: Genome-wide transcriptomic studies on gestational tissues in labor provide molecular insights in mechanism of normal parturition. This systematic review aimed to summarize the important genes in various gestational tissues around labor onset, and to dissect the underlying molecular regulations and pathways that trigger the labor in term pregnancies.Data sources: PubMed and Web of Science were searched from inception to January 2021.Study Eligibility Criteria: Untargeted genome-wide transcriptomic studies comparing the gene expression of various gestational tissues in normal term pregnant women with and without labor were included.Methods: Every differentially expressed gene was retrieved. Consistently expressed genes with same direction in different studies were identified, then gene ontology and KEGG analysis were conducted to understand molecular pathways and functions. Gene-gene association analysis was performed to determine the key regulatory gene(s) in labor onset.Results: A total of 15 studies, including 266 subjects, were included. 136, 26, 15, 7, and 3 genes were significantly changed during labor in the myometrium (seven studies, n = 108), uterine cervix (four studies, n = 64), decidua (two studies, n = 42), amnion (two studies, n = 44) and placenta (two studies, n = 41), respectively. These genes were overrepresented in annotation terms related to inflammatory and immune responses. TNF and NOD-like receptor signaling pathways were overrepresented in all mentioned tissues, except the placenta. IL6 was the only gene included in both pathways, the most common reported gene in all included studies, and also the gene in the central hub of molecular regulatory network.Conclusions: This systematic review identified that genes involved in immunological and inflammatory regulations are expressed in specific gestational tissues in labor. We put forward the hypothesis that IL6 might be the key gene triggering specific mechanism in different gestational tissues, eventually leading to labor onset through inducing uterine contraction, wakening fetal membranes and stimulating cervical ripening.Systematic Review Registration: Identifier [CRD42020187975].


2021 ◽  
Vol 12 ◽  
Author(s):  
Carole Brosseau ◽  
Amandine Selle ◽  
Angeline Duval ◽  
Barbara Misme-Aucouturier ◽  
Melanie Chesneau ◽  
...  

The gut microbiota is influenced by environmental factors such as food. Maternal diet during pregnancy modifies the gut microbiota composition and function, leading to the production of specific compounds that are transferred to the fetus and enhance the ontogeny and maturation of the immune system. Prebiotics are fermented by gut bacteria, leading to the release of short-chain fatty acids that can specifically interact with the immune system, inducing a switch toward tolerogenic populations and therefore conferring health benefits. In this study, pregnant BALB/cJRj mice were fed either a control diet or a diet enriched in prebiotics (Galacto-oligosaccharides/Inulin). We hypothesized that galacto-oligosaccharides/inulin supplementation during gestation could modify the maternal microbiota, favoring healthy immune imprinting in the fetus. Galacto-oligosaccharides/inulin supplementation during gestation increases the abundance of Bacteroidetes and decreases that of Firmicutes in the gut microbiota, leading to increased production of fecal acetate, which was found for the first time in amniotic fluid. Prebiotic supplementation increased the abundance of regulatory B and T cells in gestational tissues and in the fetus. Interestingly, these regulatory cells remained later in life. In conclusion, prebiotic supplementation during pregnancy leads to the transmission of specific microbial and immune factors from mother to child, allowing the establishment of tolerogenic immune imprinting in the fetus that may be beneficial for infant health outcomes.


2021 ◽  
Vol 22 (10) ◽  
pp. 5402
Author(s):  
Natalia Gebara ◽  
Yolanda Correia ◽  
Keqing Wang ◽  
Benedetta Bussolati

Angiogenesis is one of the main processes that coordinate the biological events leading to a successful pregnancy, and its imbalance characterizes several pregnancy-related diseases, including preeclampsia. Intracellular interactions via extracellular vesicles (EVs) contribute to pregnancy’s physiology and pathophysiology, and to the fetal–maternal interaction. The present review outlines the implications of EV-mediated crosstalk in the angiogenic process in healthy pregnancy and its dysregulation in preeclampsia. In particular, the effect of EVs derived from gestational tissues in pro and anti-angiogenic processes in the physiological and pathological setting is described. Moreover, the application of EVs from placental stem cells in the clinical setting is reported.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 584
Author(s):  
Laura Bordoni ◽  
Irene Petracci ◽  
Jean Calleja-Agius ◽  
Joan G. Lalor ◽  
Rosita Gabbianelli

Perinatal life represents a delicate phase of development where stimuli of all sorts, coming to or from the mother, can influence the programming of the future baby’s health. These stimuli may have consequences that persist throughout adulthood. Nuclear receptor related 1 protein (NURR1), a transcription factor with a critical role in the development of the dopaminergic neurons in the midbrain, mediates the response to stressful environmental stimuli in the perinatal period. During pregnancy, low-grade inflammation triggered by maternal obesity, hyperinsulinemia or vaginal infections alters NURR1 expression in human gestational tissues. A similar scenario is triggered by exposure to neurotoxic compounds, which are associated with NURR1 epigenetic deregulation in the offspring, with potential intergenerational effects. Since these alterations have been associated with an increased risk of developing late-onset diseases in children, NURR1, alone, or in combination with other molecular markers, has been proposed as a new prognostic tool and a potential therapeutic target for several pathological conditions. This narrative review describes perinatal stress associated with NURR1 gene deregulation, which is proposed here as a mediator of late-onset consequences of early life events.


Reproduction ◽  
2020 ◽  
Vol 160 (4) ◽  
pp. 561-578 ◽  
Author(s):  
Caitlyn Nguyen-Ngo ◽  
Carlos Salomon ◽  
Andrew Lai ◽  
Jane C Willcox ◽  
Martha Lappas

Spontaneous preterm birth is the leading cause of neonatal mortality and morbidity globally. Activation of the maternal immune system leads to a downstream cascade of proinflammatory events that culminate in the activation of spontaneous uterine contractions and the rupture of the foetal membranes. Anti-inflammatory agents may be a novel therapeutic approach to prevent inflammation-induced myometrial contractions and premature rupture of foetal membranes. The polyphenol gallic acid has been previously shown to exert potent anti-inflammatory effects. Thus, this study aimed to determine the effect of gallic acid on proinflammatory and pro-labour mediators in cytokine-stimulated gestational tissues in vitro. In primary human cells isolated from myometrium and foetal membranes (decidua, and amnion mesenchymal and epithelial cells), gallic acid treatment suppressed inflammation-induced expression of proinflammatory cytokines and chemokines and extracellular matrix-degrading and matrix-remodelling enzymes. Gallic acid also significantly inhibited inflammation-induced myometrial activation as evidenced by decreased expression of contraction-associated proteins, the uterotonic PGF2α and collagen cell contractility. Using a global proteomic approach, gallic acid may differentially regulate proteins associated with collagen synthesis, cell contractility and protein synthesis in primary myometrial and decidual cells. In summary, gallic acid inhibited inflammation-induced mediators involved in active labour in primary cells isolated from myometrium and foetal membranes. These in vitro studies suggest that the polyphenol gallic acid may be able to suppress the production of proinflammatory and pro-labour mediators involved in myometrial contractions and rupture of foetal membranes. Future preclinical studies may elucidate the efficacy of gallic acid in preventing inflammation-driven preterm birth.


2020 ◽  
Vol 11 ◽  
Author(s):  
Zahirrah B. M. Rasheed ◽  
Yun S. Lee ◽  
Sung H. Kim ◽  
Ranjit K. Rai ◽  
Camino S. M. Ruano ◽  
...  

2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Najah Dhemesh ◽  
Maysam Hamsho ◽  
Habib Jarbouh

Abstract Recurrent pregnancy loss (RPL) is a common disease, which presents as two, three or more failed pregnancies. It is attributed to many risk factors, yet half of the cases are idiopathic. In this report, we present a case of a 44-year-old woman with a complaint of secondary infertility for 10 years and a history of three spontaneous abortions. Blood tests and images showed no abnormalities, except for hysteroscopy which showed a polyp-like mass. Pathology revealed an endometrial stroma showing severe decidualization with a lot of gestational villi showing fibrosis and hyaline degeneration, features of old gestational product death, with no glands crowding or cellular atypia. In this case, the conception products were not preceded with a miscarriage and did not cause any symptoms indicating its existing. The asymptomatic endometrial polyp filled with fibrotic gestational villi without a prior miscarriage is an unprecedented case in the medical literature.


Sign in / Sign up

Export Citation Format

Share Document