Endocrine control of smoltification in anadromous salmonids

1986 ◽  
Vol 108 (2) ◽  
pp. 313-319 ◽  
Author(s):  
M. G. Barron

ABSTRACT The parr–smolt transformation (smoltification) of juvenile anadromous salmonids involves a morphological, physiological and behavioural metamorphosis of the fish from a freshwater-adapted form to a saltwater-adapted form. Several endocrine glands are activated during the period of smoltification, including pituitary, thyroid, and interrenal tissues. The pituitary-thyroid axis appears to be the endocrine system most directly involved in controlling smoltification. A plasma thyroid hormone surge occurs during smoltification which appears to influence various tissues and other endocrine systems, and to induce the well-documented developmental changes associated with smoltification. The pituitary-interrenal axis has been implicated in several smoltification-related events, including development of hypo-osmotic regulatory ability. A plasma cortisol surge closely follows the thyroid hormone surge during smoltification, but in contrast to anuran metamorphosis, the peaks do not coincide. Despite recent attention, the role of the corticosteroids in development of hypo-osmotic regulatory ability remains unclear. The other endocrine tissues of the salmonids appear to be acting trophically with the thyroid hormones, or to have little involvement in the control of smoltification. J. Endocr. (1986) 108, 313–319

2017 ◽  
Author(s):  
Chunyun Zhong ◽  
Kewen Xiong ◽  
Xin Wang

AbstractProgesterone is a natural steroid hormone excreted by animals and humans, which has been frequently detected in the aquatic ecosystems. The effects of the residual progesterone on fish are unclear. In this study, we aimed to examine the effects of progesterone on the hypothalamic-pituitary-thyroid (HPT) axis by detecting the gene transcriptional expression levels. Zebrafish embryos were treated with different concentrations of progesterone from 12 hours post-fertilization (hpf) to 120 hpf. Total mRNA was extracted and the transcriptional profiles of genes involved in HPT axis were examined using qPCR. The genes related to thyroid hormone metabolism and thyroid hormone synthesis were up-regulated in zebrafish exposed to progesterone. These results indicated that progesterone affected the mRNA expression of genes involved in the HPT axis, which might interrupt the endocrine system in zebrafish. Our data also suggested that zebrafish is a useful tool for evaluating the effects of chemicals on the thyroid endocrine system.


2004 ◽  
pp. 497-502 ◽  
Author(s):  
A Boelen ◽  
J Kwakkel ◽  
M Platvoet-ter Schiphorst ◽  
B Mentrup ◽  
A Baur ◽  
...  

OBJECTIVE: Proinflammatory cytokines are involved in the pathogenesis of non-thyroidal illness (NTI), as shown by studies with IL-6-/- and IL-12-/- mice. Interleukin (IL)-6 changes peripheral thyroid hormone metabolism, and IL-12 seems to be involved in the regulation of the central part of the hypothalamic-pituitary-thyroid (HPT) axis during illness. IL-18 is a proinflammatory cytokine which shares important biological properties with IL-12, such as interferon (IFN)-gamma-inducing activity. DESIGN: By studying the changes in the HPT-axis during bacterial lipopolysaccharide (LPS)-induced illness in IL-18-/-, IFNgammaR-/- and wild-type (WT) mice, we wanted to unravel the putative role of IL-18 and IFNgamma in the pathogenesis of NTI. RESULTS: LPS induced a decrease in pituitary type 1 deiodinase (D1) activity (P<0.05, ANOVA) in WT mice, but not in IL-18-/- mice, while the decrease in D2 activity was similar in both strains. LPS decreased serum thyroid hormone levels and liver D1 mRNA within 24 h similarly in IL-18-/-, and WT mice. The expression of IL-1, IL-6 and IFNgamma mRNA expression was significantly lower in IL-18-/- mice than in WT, while IL-12 mRNA expression was similar. IFNgammaR-/- mice had higher basal D1 activity in the pituitary than WT mice (P<0.05); LPS induced a decrease of D2, but not of D1, activity in the pituitary which was similar in both strains. In the liver, the LPS-induced increase in cytokine expression was not different between IFNgammaR-/- mice and WT mice, and the decrease in serum T3 and T4 levels and hepatic D1 mRNA was also similar. CONCLUSIONS: The relative decrease in serum T3 and T4 and liver D1 mRNA in response to LPS is similar in IL-18-/-, IFNgammaR-/- and WT mice despite significant changes in hepatic cytokine induction. However, the LPS-induced decrease in D1 activity in the pituitary of WT mice is absent in IL-18-/- mice; in contrast, LPS did not decrease pituitary D1 activity in the IFNgammaR-/- mice or their WT, which might be due to the genetic background of the mice. Our results suggest that IL-18 is also involved in the regulation of the central part of the HPT axis during illness.


2019 ◽  
Vol 128 (06/07) ◽  
pp. 388-394
Author(s):  
Helge Müller-Fielitz ◽  
Markus Schwaninger

AbstractThyroid hormone (TH) regulation is important for development, energy homeostasis, heart function, and bone formation. To control the effects of TH in target organs, the hypothalamus-pituitary-thyroid (HPT) axis and the tissue-specific availability of TH are highly regulated by negative feedback. To exert a central feedback, TH must enter the brain via specific transport mechanisms and cross the blood-brain barrier. Here, tanycytes, which are located in the ventral walls of the 3rd ventricle in the mediobasal hypothalamus (MBH), function as gatekeepers. Tanycytes are able to transport, sense, and modify the release of hormones of the HPT axis and are involved in feedback regulation. In this review, we focus on the relevance of tanycytes in thyrotropin-releasing hormone (TRH) release and review available genetic tools to investigate the physiological functions of these cells.


Endocrinology ◽  
2002 ◽  
Vol 143 (12) ◽  
pp. 4513-4519 ◽  
Author(s):  
Csaba Fekete ◽  
Sumit Sarkar ◽  
William M. Rand ◽  
John W. Harney ◽  
Charles H. Emerson ◽  
...  

Abstract Neuropeptide Y (NPY) is one of the most important hypothalamic-derived neuropeptides mediating the effects of leptin on energy homeostasis. Central administration of NPY not only markedly stimulates food intake, but simultaneously inhibits the hypothalamic-pituitary-thyroid axis (HPT axis), replicating the central hypothyroid state associated with fasting. To identify the specific NPY receptor subtypes involved in the action of NPY on the HPT axis, we studied the effects of the highly selective Y1 ([Phe7,Pro34]pNPY) and Y5 ([chicken pancreatic polypeptide1–7, NPY19–23, Ala31, Aib32 (aminoisobutyric acid), Q34]human pancreatic polypeptide) receptor agonists on circulating thyroid hormone levels and proTRH mRNA in hypophysiotropic neurons of the hypothalamic paraventricular nucleus. The peptides were administered continuously by osmotic minipump into the cerebrospinal fluid (CSF) over 3 d in ad libitum-fed animals and animals pair-fed to artificial CSF (aCSF)-infused controls. Both Y1 and Y5 receptor agonists nearly doubled food intake compared with that of control animals receiving aCSF, similar to the effect observed for NPY. NPY, Y1, and Y5 receptor agonist administration suppressed circulating levels of thyroid hormones (T3 and T4) and resulted in inappropriately normal or low TSH levels. These alterations were also associated with significant suppression of proTRH mRNA in the paraventricular nucleus, particularly in the Y1 receptor agonist-infused group [aCSF, NPY, Y1, and Y5 (density units ± sem), 97.2 ± 8.6, 39.6 ± 8.4, 19.9 ± 1.9, and 44.6 ± 8.4]. No significant differences in thyroid hormone levels, TSH, or proTRH mRNA were observed between the agonist-infused FSanimals eating ad libitum and the agonist-infused animals pair-fed with vehicle-treated controls. These data confirm the importance of both Y1 and Y5 receptors in the NPY-mediated increase in food consumption and demonstrate that both Y1 and Y5 receptors can mediate the inhibitory effects of NPY on the HPT axis.


2010 ◽  
Vol 31 (1) ◽  
pp. 136-136
Author(s):  
Michelle L. Sugrue ◽  
Kristen R. Vella ◽  
Crystal Morales ◽  
Marisol E. Lopez ◽  
Anthony N. Hollenberg

ABSTRACT The expression of the TRH gene in the paraventricular nucleus (PVH) of the hypothalamus is required for the normal production of thyroid hormone (TH) in rodents and humans. In addition, the regulation of TRH mRNA expression by TH, specifically in the PVH, ensures tight control of the set point of the hypothalamic-pituitary-thyroid axis. Although many studies have assumed that the regulation of TRH expression by TH is at the level of transcription, there is little data available to demonstrate this. We used two in vivo model systems to show this. In the first model system, we developed an in situ hybridization (ISH) assay directed against TRH heteronuclear RNA to measure TRH transcription directly in vivo. We show that in the euthyroid state, TRH transcription is present both in the PVH and anterior/lateral hypothalamus. In the hypothyroid state, transcription is activated in the PVH only and can be shut off within 5 h by TH. In the second model system, we employed transgenic mice that express the Cre recombinase under the control of the genomic region containing the TRH gene. Remarkably, TH regulates Cre expression in these mice in the PVH only. Taken together, these data affirm that TH regulates TRH at the level of transcription in the PVH only and that genomic elements surrounding the TRH gene mediate its regulation by T3. Thus, it should be possible to identify the elements within the TRH locus that mediate its regulation by T3 using in vivo approaches.


Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4128-4135 ◽  
Author(s):  
Ricardo H. Costa-e-Sousa ◽  
Anthony N. Hollenberg

Thyroid hormone (TH) signaling plays an important role in development and adult life. Many organisms may have evolved under selective pressure of exogenous TH, suggesting that thyroid hormone signaling is phylogenetically older than the systems that regulate their synthesis. Therefore, the negative feedback system by TH itself was probably the first mechanism of regulation of circulating TH levels. In humans and other vertebrates, it is well known that TH negatively regulates its own production through central actions that modulate the hypothalamic-pituitary-thyroid (HPT) axis. Indeed, primary hypothyroidism leads to the up-regulation of the genes encoding many key players in the HPT axis, such as TRH, type 2 deiodinase (dio2), pyroglutamyl peptidase II (PPII), TRH receptor 1 (TRHR1), and the TSH α- and β-subunits. However, in many physiological circumstances, the activity of the HPT axis is not always a function of circulating TH concentrations. Indeed, circadian changes in the HPT axis activity are not a consequence of oscillation in circulating TH levels. Similarly, during reduced food availability, several components of the HPT axis are down-regulated even in the presence of lower circulating TH levels, suggesting the presence of a regulatory pathway hierarchically higher than the feedback system. This minireview discusses the neural regulation of the HPT axis, focusing on both TH-dependent and -independent pathways and their potential integration.


Sign in / Sign up

Export Citation Format

Share Document