GnRH-induced calcium mobilisation and inositol phosphate production in immature and mature rat ovarian granulosa cells

1996 ◽  
Vol 149 (3) ◽  
pp. 449-456 ◽  
Author(s):  
L Anderson ◽  
S G Hillier ◽  
K A Eidne ◽  
F Miro

Abstract In rat ovarian granulosa cells the effects of GnRH are determined by the state of granulosa cell development with mainly inhibitory actions in immature cells and stimulatory actions in differentiated mature cells. These developmentally related effects of GnRH may arise from changes in either one or more of the signal transduction pathways activated by GnRH. The present study therefore measured downstream signalling events associated with the activation of the phospholipase C (PLC) signal transduction pathway in both mature and immature rat ovarian granulosa cells. Results showed that GnRH produced similar total inositol phosphate and intracellular calcium ([Ca2+ ]i) responses in both immature and mature granulosa cells. In contrast to the biphasic GnRH-induced [Ca2+]i response in pituitary gonadotropes, stimulation of the endogenously expressed GnRH receptor in both immature and mature granulosa cells produced a prompt monophasic rise in [Ca2+]i. This calcium transient was abolished by pretreating either cell type with a potent GnRH receptor antagonist or the PLC inhibitor U73122, demonstrating a GnRH receptor-specific activation of PLC. Similarly, pretreatment of cells with the [Ca2+]i antagonists thapsigargin or cyclopiazonic acid abolished the GnRH-induced calcium transient, whereas EGTA and nifedipine, a voltage-operated calcium channel (VOCC) antagonist, had no effect. These results suggest that in either immature or mature granulosa cells GnRH mobilises calcium from thapsigargin/cyclopiazonic acid-sensitive [Ca2+]i stores but does not involve the influx of extracellular calcium through VOCCs. We conclude that GnRH-induced stimulation of the PLC signal transduction pathway is independent of the stage of granulosa cell maturity and that alternative mechanisms account for the opposite effects of GnRH on gonadotrophin-induced steroidogenesis in mature and immature rat granulosa cells in vitro. Journal of Endocrinology (1996) 149, 449–456

1989 ◽  
Vol 62 (04) ◽  
pp. 1116-1120 ◽  
Author(s):  
N Chetty ◽  
J D Vickers ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
J F Mustard

SummaryEicosapentaenoic acid (EPA) inhibits platelet responsiveness to aggregating agents. To investigate the reactions that are affected by EPA, we examined the effect of preincubating aspirintreated rabbit platelets with EPA on stimulation of inositol phosphate formation in response to the TXA2 analogue U46619. Stimulation of platelets with U46619 (0.5 μM) caused aggregation and slight release of dense granule contents; aggregation and release were inhibited by preincubation of the platelets with EPA (50 μM) for 1 h followed by washing to remove unincorporated EPA. Incubation with EPA (50 μM) for 1 h did not cause a detectable increase in the amount of EPA in the platelet phospholipids. When platelets were prelabelled with [3H]inositol stimulation with U46619 of control platelets that had not been incubated with EPA significantly increased the labelling of mos1tol phosphates. The increases in inositol phosphate labelling due to U46619 at 10 and 60 s were partially inhibited by premcubat10n of the platelets with 50 μM EPA. Since the activity of cyclo-oxygenase was blocked with aspirin, inhibition of inositol phosphate labelling in response to U46619 indicates either that there may be inhibition of signal transduction without a detectable change in the amount of EPA in platelet phospholipids, that changes in signal transduction require only minute changes in the fatty acid composition of membrane phospholipids, or that after a 1 h incubation with EPA, activation of phospholipase C is affected by a mechanism that is not directly related to incorporation of EPA.


1996 ◽  
Vol 270 (6) ◽  
pp. C1834-C1842 ◽  
Author(s):  
M. B. Marrero ◽  
B. Schieffer ◽  
H. Ma ◽  
K. E. Bernstein ◽  
B. N. Ling

Angiotensin II (ANG II)-induced, activation of phospholipase C (PLC) and Ca(2+)-dependent Cl-channels is an important signal transduction pathway for mesangial cell contraction and growth. Although ANG II receptors are traditionally though to be G protein coupled, recent evidence suggests that they may also mediate protein tyrosine phosphorylation. In cultured rat mesangial cells, 10(-7) MANG II stimulated the tyrosine phosphorylation of PLC-gamma 1 and elevation of intracellular inositol 1,4,5-trisphosphate (IP3) and Ca2+ levels; peak response occurred within 0.5 min. In cell-attached patches, ANG II stimulated the activity of Ca(2+)-dependent, 3- to 4-pS Cl-channels (number of channels x open probability) from 0.063 +/- 0.022 to 0.77 +/- 0.20. Tyrosine kinase inhibition with genistein or herbimycin A blocked all four ANG II-induced responses. We conclude the following. 1) Stimulation of inositol phosphate hydrolysis by PLC, release of IP3-dependent intracellular Ca2+ stores, and activation of Ca(2+)-dependent C1-channels by ANG II are dependent on the tyrosine phosphorylation of PLC-gamma 1.2) This ANG II-induced signal transduction cascade provides a possible mechanism for both the contractile and growth-stimulating effects of ANG II on glomerular mesangial cells.


2019 ◽  
Vol 31 (6) ◽  
pp. 1091 ◽  
Author(s):  
Yishu Wang ◽  
Enhang Lu ◽  
Riqiang Bao ◽  
Ping Xu ◽  
Fen Feng ◽  
...  

The Notch signalling pathway in the mammalian ovary regulates granulosa cell proliferation. However, the effects of Notch signalling on steroidogenesis are unclear. In this study we cultured mouse ovarian granulosa cells from preantral follicles invitro and observed the effect of Notch signalling on steroidogenesis through overexpression, knockdown and inhibition of Notch signalling. Activation of Notch signalling decreased progesterone and oestrogen secretion. In contrast, inhibition of Notch signalling increased the production of progesterone and oestrogen. Expression of the genes for steroidogenic-related enzymes, including 3β-hydroxysteroid dehydrogenase, p450 cholesterol side-chain cleavage enzyme and aromatase, was repressed after stimulation of Notch signalling. The expression of upstream transcription factors, including steroidogenic factor 1 (SF1), Wilms’ tumour 1 (Wt1), GATA-binding protein 4 (Gata4) and Gata6, was also inhibited after stimulation of Notch signalling. Production of interleukin (IL)-6 was positively correlated with Notch signalling and negatively correlated with the expression of these transcription factors and enzymes. In conclusion, Notch signalling regulated progesterone and oestrogen secretion by affecting the expression of upstream transcription factors SF1, Wt1, Gata4 and Gata6, as well as downstream steroidogenic-related enzymes. IL-6, which may be regulated directly by Notch signalling, may contribute to this process. Our findings add to the understanding of the diverse functions of Notch signalling in the mammalian ovary.


1988 ◽  
Vol 89 (1) ◽  
pp. 13-20
Author(s):  
G.N. Europe-Finner ◽  
M.E. Luderus ◽  
N.V. Small ◽  
R. Van Driel ◽  
C.D. Reymond ◽  
...  

Previous studies of Europe-Finner & Newell indicated that in amoebae of Dictyostelium discoideum, signal transduction used for chemotaxis to cyclic AMP involved transient formation of inositol tris- and polyphosphates. Evidence was also presented for the involvement of a GTP-binding G-protein. Here we report evidence for the involvement of a ras gene product in the D. discoideum inositol phosphate pathway. Use was made of strains of Dictyostelium transformed with a wild-type D. discoideum ras gene (ras-Gly12) or a mutant form of the gene (ras-Thr12). Experiments using separation of soluble inositol phosphates by Dowex anion-exchange resin chromatography indicated that cells transformed with the wild-type ras-Gly12 gene were unaffected in their basal levels of inositol polyphosphates and in the inositol phosphates formed in response to stimulation with the chemotactic agent cyclic AMP. In contrast, cells transformed with the mutant ras-Thr12 gene showed a basal level of inositol polyphosphate that was several-fold elevated over the controls and stimulation of these cells with cyclic AMP produced only a small further elevation. When the inositol phosphates were analysed by h.p.l.c. it was found that the basal level of inositol 1,4,5-trisphosphate was raised three- to fivefold in the ras-Thr12 strain compared to the strain transformed with ras-Gly12, and that inositol hexakisphosphate (which was found to be present in large amounts relative to other inositol phosphates in D. discoideum cells) was also raised to a similar extent in the ras-Thr12-transformed cells. We propose that the Dictyostelium ras gene product codes for a regulatory protein involved in the inositol phosphate chemotactic signal-transduction pathway.


Endocrinology ◽  
2003 ◽  
Vol 144 (2) ◽  
pp. 454-466 ◽  
Author(s):  
Jae Young Seong ◽  
Li Wang ◽  
Da Young Oh ◽  
Oim Yun ◽  
Kaushik Maiti ◽  
...  

Recently, we have identified three distinct types of bullfrog GnRH receptor (designated bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3). In the present study, we have isolated three GnRHR clones in Rana dybowskii (dyGnRHR-1, dyGnRHR-2, and dyGnRHR-3). Despite high homology of dyGnRHRs with the corresponding bfGnRHRs, dyGnRHRs revealed different signaling pathways and ligand sensitivity compared with the bfGnRHR counterparts. Activation of dyGnRHRs with GnRH stimulated cAMP-mediated gene expression. However, dyGnRHR-3 but not dyGnRHR-1 and -2 induced c-fos promoter-driven gene expression. Consistently, dyGnRHR-1 and dyGnRHR-2 were not able to increase GnRH-induced inositol phosphate accumulation, whereas all bfGnRHRs and dyGnRHR-3 were, indicating that dyGnRHR-1 and dyGnRHR-2 are coupled to solely Gs, whereas all bfGnRHRs and dyGnRHR-3 are coupled to both Gs and Gq/11. Moreover, dyGnRHR-1 and dyGnRHR-2 showed about 10-fold less sensitivity to each ligand than that of the bfGnRHR counterparts. Using type 1 chimeric and point-mutated receptors, we further elucidated that specific amino acids, Ala/Thr201 in extracellular loop 2 and Leu/Phe290 in transmembrane domain 6 of the type 1 receptor, are responsible for ligand sensitivity and signal transduction pathway. Particularly, substitution of Leu290 to Phe in dyGnRHR-1 increased GnRH-induced inositol phosphate production as well as c-fos promoter-driven gene expression whereas substitution of Phe290 to Leu in bfGnRHR-1 decreased those activities. Collectively, these results demonstrate the presence of three types of GnRHR in amphibians, and suggest species- and type-specific ligand recognition and different signaling pathways in frog GnRHRs.


Sign in / Sign up

Export Citation Format

Share Document