Normal pancreastatin-like and increased post-glucose insulin levels in young offspring of insulin-resistant non-obese essential hypertensive patients

1997 ◽  
Vol 153 (2) ◽  
pp. 313-318 ◽  
Author(s):  
V Sánchez-Margalet ◽  
E Ramos ◽  
J Mateo ◽  
J Oliván ◽  
R Pérez-Cano ◽  
...  

Abstract Pancreastatin is a regulatory peptide known to inhibit insulin secretion and insulin action with a glycogenolytic effect in the liver. This peptide is present in and secreted by many endocrine and chromaffin cells. Abnormalities of glucose, insulin and lipoprotein metabolism are common in patients with hypertension, as well as their first-degree relatives. We have recently studied a group of non-obese hypertensive subjects in which pancreastatin-like levels were increased compared with controls, and correlated with norepinephrine levels. We hypothesized that pancreastatin alongside the sympathoadrenal system might have a part in the insulin resistance of these patients, and this metabolic syndrome could play a role in the pathogenesis and complications of hypertension. In this article, we studied the normotensive offspring of these non-obese hypertensive patients and looked for metabolic abnormalities as well as plasma pancreastatin, glucagon and catecholamine levels. The subjects were separated into two groups: (1) offspring from non-insulin-resistant patients and (2) offspring from insulin-resistant patients. We found that after an intravenous glucose load, offspring from insulin-resistant patients were already hyperinsulinemic, although glucose clearance was normal, suggesting an early alteration in insulin sensitivity, whereas pancreastatin and catecholamine levels were normal compared with matched controls. However, offspring from non-insulin-resistant patients had no differences with controls. These results suggest that pancreastatin and catecholamines may not play an important role in triggering insulin resistance, although they may be important once the syndrome is established. Journal of Endocrinology (1997) 153, 313–318

2004 ◽  
Vol 287 (4) ◽  
pp. E799-E803 ◽  
Author(s):  
Gina B. Di Gregorio ◽  
Rickard Westergren ◽  
Sven Enerback ◽  
Tong Lu ◽  
Philip A. Kern

FOXC2 is a winged helix/forkhead transcription factor involved in PKA signaling. Overexpression of FOXC2 in the adipose tissue of transgenic mice protected against diet-induced obesity and insulin resistance. We examined the expression of FOXC2 in fat and muscle of nondiabetic humans with varying obesity and insulin sensitivity. There was no relation between body mass index (BMI) and FOXC2 mRNA in either adipose or muscle. There was a strong inverse relation between adipose FOXC2 mRNA and insulin sensitivity, using the frequently sampled intravenous glucose tolerance test ( r = −0.78, P < 0.001). However, there was no relationship between muscle FOXC2 and any measure of insulin sensitivity. To separate insulin resistance from obesity, we examined FOXC2 expression in pairs of subjects who were matched for BMI but who were discordant for insulin sensitivity. Compared with insulin-sensitive subjects, insulin-resistant subjects had threefold higher levels of adipose FOXC2 mRNA ( P = 0.03). In contrast, muscle FOXC2 mRNA expression was no different between insulin-resistant and insulin-sensitive subjects. There was no association of adipose or muscle FOXC2 mRNA with either circulating or adipose-secreted TNF-α, IL-6, leptin, adiponectin, or non-esterified fatty acids. Thus adipose FOXC2 is more highly expressed in insulin-resistant subjects, and this effect is independent of obesity. This association between FOXC2 and insulin resistance may be related to the role of FOXC2 in PKA signaling.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Andin Fosam ◽  
Shivraj Grewal ◽  
Abdul-Latif Armiyaw ◽  
Camila Sarcone ◽  
Antoinette Rabel ◽  
...  

Abstract South Asians (SA) are at higher risk for developing insulin resistance (IR) and type 2 diabetes. Consequently, identifying IR in this population is important. Lack of standardization and harmonization of insulin assays limit the clinical use of insulin-based surrogate indexes of insulin resistance. The lipoprotein insulin resistance (LPIR) score, a metabolomic marker, reflects the lipoprotein abnormalities observed in insulin-resistant states. The reliability of the LPIR score to predict IR in South Asians is currently unknown. In this study, we aimed to evaluate the predictive accuracy of LPIR compared to other fasting-based surrogate indices in SA. In a cross-sectional study of 59 non-diabetic SA subjects (age 36 ± 8 years, BMI 26.5 ± 5.2 kg/m2), we used calibration model analysis to assess the ability of the LPIR score and other simple surrogate indices [homeostasis model assessment (HOMA-IR), quantitative insulin sensitivity check index (QUICKI) and Adipose tissue insulin sensitivity (Adipo-SI)] to predict insulin sensitivity derived from the reference frequently sampled intravenous glucose tolerance test (FSIVGTT) and Minimal Model analysis (SiMM). LPIR scores were calculated using six lipoprotein particle concentrations and sizes measured by nuclear magnetic resonance (NMR) spectroscopy. Further, quantitative predictive accuracy and index comparisons were determined by root mean squared error (RMSE) of prediction and leave-one-out cross-validation-type RMSE of prediction (CVPE). Receiver operating characteristic (ROC) curve analysis was performed to determine how well LPIR distinguished insulin resistant individuals, categorized as an SiMM &lt; 3. As determined by calibration model analysis, Adipo-SI, HOMA-IR, and QUICKI showed moderate correlations with for SiMM (Adipo-SI: r = 0.66; HOMA-IR: r = 0.60; QUICKI: r = 0.57, p = &lt;0.0001). No significant differences were noted among CVPE or RMSE from any of the routinely used surrogate indices when compared with LPIR. The ROC area under the curve was 0.76 (95% CI 0.64–0.87) suggesting that LPIR performed well in identifying insulin resistant subjects. The optimal cut-off in IR individuals was LPIR &gt;46 (sensitivity: 75.9 %, specificity: 70.0%). We conclude that NMR-derived LPIR may be an appropriate index to assess insulin resistance in South Asians.


2019 ◽  
Vol 17 (5) ◽  
pp. 455-464 ◽  
Author(s):  
Alfonso Mate ◽  
Antonio J. Blanca ◽  
Rocío Salsoso ◽  
Fernando Toledo ◽  
Pablo Stiefel ◽  
...  

Pregnancy hypertensive disorders such as Preeclampsia (PE) are strongly correlated with insulin resistance, a condition in which the metabolic handling of D-glucose is deficient. In addition, the impact of preeclampsia is enhanced by other insulin-resistant disorders, including polycystic ovary syndrome and obesity. For this reason, there is a clear association between maternal insulin resistance, polycystic ovary syndrome, obesity and the development of PE. However, whether PE is a consequence or the cause of these disorders is still unclear. Insulin therapy is usually recommended to pregnant women with diabetes mellitus when dietary and lifestyle measures have failed. The advantage of insulin therapy for Gestational Diabetes Mellitus (GDM) patients with hypertension is still controversial; surprisingly, there are no studies in which insulin therapy has been used in patients with hypertension in pregnancy without or with an established GDM. This review is focused on the use of insulin therapy in hypertensive disorders in the pregnancy and its effect on offspring and mother later in life. PubMed and relevant medical databases have been screened for literature covering research in the field especially in the last 5-10 years.


Diabetes Care ◽  
2007 ◽  
Vol 30 (10) ◽  
pp. e107-e107
Author(s):  
G. Colussi ◽  
C. Catena ◽  
R. Lapenna ◽  
E. Nadalini ◽  
A. Chiuch ◽  
...  

2007 ◽  
Vol 293 (4) ◽  
pp. E986-E1001 ◽  
Author(s):  
Robert C. Noland ◽  
Tracey L. Woodlief ◽  
Brian R. Whitfield ◽  
Steven M. Manning ◽  
Jasper R. Evans ◽  
...  

Peroxisomal oxidation yields metabolites that are more efficiently utilized by mitochondria. This is of potential clinical importance because reduced fatty acid oxidation is suspected to promote excess lipid accumulation in obesity-associated insulin resistance. Our purpose was to assess peroxisomal contributions to mitochondrial oxidation in mixed gastrocnemius (MG), liver, and left ventricle (LV) homogenates from lean and fatty ( fa/fa) Zucker rats. Results indicate that complete mitochondrial oxidation (CO2production) using various lipid substrates was increased approximately twofold in MG, unaltered in LV, and diminished ∼50% in liver of fa/fa rats. In isolated mitochondria, malonyl-CoA inhibited CO2production from palmitate 78%, whereas adding isolated peroxisomes reduced inhibition to 21%. These data demonstrate that peroxisomal products may enter mitochondria independently of CPT I, thus providing a route to maintain lipid disposal under conditions where malonyl-CoA levels are elevated, such as in insulin-resistant tissues. Peroxisomal metabolism of lignoceric acid in fa/fa rats was elevated in both liver and MG (LV unaltered), but peroxisomal product distribution varied. A threefold elevation in incomplete oxidation was solely responsible for increased hepatic peroxisomal oxidation (CO2unaltered). Alternatively, only CO2was detected in MG, indicating that peroxisomal products were exclusively partitioned to mitochondria for complete lipid disposal. These data suggest tissue-specific destinations for peroxisome-derived products and emphasize a potential role for peroxisomes in skeletal muscle lipid metabolism in the obese, insulin-resistant state.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 601.2-602
Author(s):  
J. Avouac ◽  
M. Elhai ◽  
M. Forien ◽  
J. Sellam ◽  
F. Eymard ◽  
...  

Background:Type-2 diabetes and rheumatoid arthritis (RA) are two chronic diseases characterized by tissue inflammation and insulin resistance. To date, no data have evaluated the influence of RA-induced joint and systemic inflammation on the course of type-2 diabetes.Objectives:To study the impact of RA on type-2 diabetesMethods:Observational, multicenter, cross-sectional usual-care study, including 7 rheumatology centers. This study included over a 24-month period consecutive patients with type-2 diabetes and RA, fulfilling the 2010 ACR / EULAR criteria, and diabetic controls with osteoarthritis (OA). The following data were collected: demographics, disease activity and severity indices, current treatment for RA and diabetes, history and complications of diabetes. A systematic blood test was performed, assessing inflammatory (CRP levels) and metabolic (fasting glycemia and insulin levels, HbA1c) parameters. The HOMA2%B (insulin secretion) and HOMA2%S (tissue insulin sensitivity) indices (HOMA calculator, © Diabetes Trials Unit, University of Oxford) were used to assess insulin resistance. Ra and OA patients were compared using parametric tests after adjusting for age and BMI. A multivariate logistic regression was performed ti identify factors independently associated with insulin resistance.Results:We included 122 RA patients (74% women, mean age 64+/-11 years, mean disease duration 15+/-11 11 years, 75% with positive ACPA antibodies and 64% with erosive disease) and 54 controls with OA. 64% of RA patients were treated with oral corticosteroids <10 mg/day, 65% received methotrexate and 53% received targeted biological therapies.The characteristics of type-2 diabetes in the 54 OA patients corresponded to severe insulin-resistant diabetes: age> 65 years, high BMI> 30 kg/m2, mean HbA1c 7.3%+/-11 1.3%, 30% of insulin requirement, high frequency of other cardiovascular risk factors, macroangiopathy found in almost half of patients and biological criteria of insulin resistance (elevation of HOMA2%B and decrease of HOMA2%S).RA patients with type-2 diabetes had a younger age (64+/-11 years vs. 68+/-12 years, p=0.031) and lower BMI (27.7+/-11 5.5 vs. 31.5+/-11 6.3, p<0.001). These patients also had severe diabetes (HbA1c 7.0%+/-11 1.2%, 29% of insulin requirement, 43% of macroangiopathy) with an insulin resistance profile identical to OA controls. After adjusting for age and BMI, RA patients had a significantly increased insulin secretion compared to OA patients (HOMA2%B: 83.1+/-11 65.2 vs. 49.3+/-11 25.7, p=0.023) as well as a significant reduction of insulin sensitivity (HOMA2%S: 61.1+/-11 31.6 vs. 92.9+/-11 68.1, p=0.016). This insulin resistance was associated with the inflammatory activity of RA, with a negative correlation between the HOMA2%S and the DAS28 (r=-0.28, p=0.027). The multivariate logistic regression confirmed the independent association between the HOMA2%S index and DAS28 (OR: 3.93, 95% CI 1.02-15.06), as well as high blood pressure (OR: 1.29, 95% CI 0.33-1.99 CI).Conclusion:RA patients with type-2 diabetes displayed severe, poorly controlled diabetes, highlighting the burden of comorbidities associated with RA. The clinical-biological profile of diabetic RA patients was severe insulin-resistant diabetes, with a biological profile of insulin resistance linked to the inflammatory activity of the disease. These findings may have therapeutic implications, with the potential targeting of insulin resistance through the treatment of joint and systemic inflammation.Acknowledgments:Société Française de Rhumatologie (research grant)Bristol Myers Squibb (research grant)Disclosure of Interests:Jérôme Avouac Grant/research support from: Pfizer, Bristol Myers Squibb, Consultant of: Sanofi, Bristol Myers Squibb, Abbvie, Boerhinger, Nordic Pharma, Speakers bureau: Sanofi, Bristol Myers Squibb Abbvie, MSD, Pfizer, Nordic Pharma, Muriel ELHAI: None declared, Marine Forien: None declared, Jérémie SELLAM: None declared, Florent Eymard Consultant of: Regenlab, Anna Moltó Grant/research support from: Pfizer, UCB, Consultant of: Abbvie, BMS, MSD, Novartis, Pfizer, UCB, Laure Gossec Grant/research support from: Lilly, Mylan, Pfizer, Sandoz, Consultant of: AbbVie, Amgen, Biogen, Celgene, Janssen, Lilly, Novartis, Pfizer, Sandoz, Sanofi-Aventis, UCB, Frédéric Banal: None declared, Joel Daminano: None declared, Philippe Dieudé: None declared, Yannick Allanore Shareholder of: Sanofi, Roche, Consultant of: Actelion, Bayer, BMS, Boehringer Ingelheim, Inventiva, Sanofi


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bernard Kianu Phanzu ◽  
Aliocha Nkodila Natuhoyila ◽  
Eleuthère Kintoki Vita ◽  
Jean-René M’Buyamba Kabangu ◽  
Benjamin Longo-Mbenza

Abstract Background Conflicting information exists regarding the association between insulin resistance (IR) and left ventricular hypertrophy (LVH). We described the associations between obesity, fasting insulinemia, homeostasis model assessment of insulin resistance (HOMA-IR), and LVH in Black patients with essential hypertension. Methods A case–control study was conducted at the Centre Médical de Kinshasa (CMK), the Democratic Republic of the Congo, between January and December 2019. Cases and controls were hypertensive patients with and without LVH, respectively. The relationships between obesity indices, physical inactivity, glucose metabolism and lipid disorder parameters, and LVH were assessed using linear and logistic regression analyses in simple and univariate exploratory analyses, respectively. When differences were observed between LVH and independent variables, the effects of potential confounders were studied through the use of multiple linear regression and in conditional logistic regression in multivariate analyses. The coefficients of determination (R2), adjusted odds ratios (aORs), and their 95% confidence intervals (95% CIs) were calculated to determine associations between LVH and the independent variables. Results Eighty-eight LVH cases (52 men) were compared against 132 controls (81 men). Variation in left ventricular mass (LVM) could be predicted by the following variables: age (19%), duration of hypertension (31.3%), body mass index (BMI, 44.4%), waist circumference (WC, 42.5%), glycemia (20%), insulinemia (44.8%), and HOMA-IR (43.7%). Hypertension duration, BMI, insulinemia, and HOMA-IR explained 68.3% of LVM variability in the multiple linear regression analysis. In the logistic regression model, obesity increased the risk of LVH by threefold [aOR 2.8; 95% CI (1.06–7.4); p = 0.038], and IR increased the risk of LVH by eightfold [aOR 8.4; 95 (3.7–15.7); p < 0.001]. Conclusion Obesity and IR appear to be the primary predictors of LVH in Black sub-Saharan African hypertensive patients. The comprehensive management of cardiovascular risk factors should be emphasized, with particular attention paid to obesity and IR. A prospective population-based study of Black sub-Saharan individuals that includes the use of serial imaging remains essential to better understand subclinical LV deterioration over time and to confirm the role played by IR in Black sub-Saharan individuals with hypertension.


Sign in / Sign up

Export Citation Format

Share Document