scholarly journals Change in prostaglandin E synthases (PGESs) in microsomal PGES-1 knockout mice in a preterm delivery model

2005 ◽  
Vol 187 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Ken Kubota ◽  
Toshiro Kubota ◽  
Daisuke Kamei ◽  
Makoto Murakami ◽  
Ichiro Kudo ◽  
...  

Most preterm deliveries are associated with infection and inflammation. Prostaglandin E2 (PGE2) is one of the most important mediators in the processes of inflammation, and is converted from PGH2 by various kinds of PGE synthases (PGESs). Among PGESs, microsomal PGES-1 (mPGES-1) is known to be the most important subtype in the processes of inflammation. To evaluate the role of PGESs in preterm delivery, we used mPGES-1 knockout mice in a lipopolysaccharide (LPS)-induced preterm labor model. Unexpectedly, the duration of labor after LPS treatment was not statistically different between C57BL6 wild-type mice and mPGES-1 knockout mice. In wild-type mice, mPGES-1 mRNA and protein expression increased in the myometrium and fetal membrane after LPS treatment. In contrast, the expression of mPGES-2 or cytosolic PGES was not changed by LPS treatment. On mPGES-1 knockout mice, mPGES-2 increased by LPS treatment in myometrium. The present data indicate that mPGES-1 may be involved in LPS-induced preterm labor, but inhibition of mPGES-1 alone may not prevent preterm delivery, because mPGES-2 might compensate for the role of mPGES-1.

Endocrinology ◽  
2008 ◽  
Vol 150 (4) ◽  
pp. 1850-1860 ◽  
Author(s):  
Camilla Nilsberth ◽  
Louise Elander ◽  
Namik Hamzic ◽  
Maria Norell ◽  
Johanna Lönn ◽  
...  

Fever has been shown to be elicited by prostaglandin E2 (PGE2) binding to its receptors on thermoregulatory neurons in the anterior hypothalamus. The signals that trigger PGE2 production are thought to include proinflammatory cytokines, such as IL-6. However, although the presence of IL-6 is critical for fever, IL-6 by itself is not or only weakly pyrogenic. Here we examined the relationship between IL-6 and PGE2 in lipopolysaccharide (LPS)-induced fever. Immune-challenged IL-6 knockout mice did not produce fever, in contrast to wild-type mice, but the expression of the inducible PGE2-synthesizing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase-1, was similarly up-regulated in the hypothalamus of both genotypes, which also displayed similarly elevated PGE2 levels in the cerebrospinal fluid. Nevertheless, both wild-type and knockout mice displayed a febrile response to graded concentrations of PGE2 injected into the lateral ventricle. There was no major genotype difference in the expression of IL-1β and TNFα or their receptors, and pretreatment of IL-6 knockout mice with soluble TNFα receptor ip or intracerebroventricularly or a cyclooxygenase-2 inhibitor ip did not abolish the LPS unresponsiveness. Hence, although IL-6 knockout mice have both an intact PGE2 synthesis and an intact fever-generating pathway downstream of PGE2, endogenously produced PGE2 is not sufficient to produce fever in the absence of IL-6. The findings suggest that IL-6 controls some factor(s) in the inflammatory cascade, which render(s) IL-6 knockout mice refractory to the pyrogenic action of PGE2, or that it is involved in the mechanisms that govern release of synthesized PGE2 onto its target neurons.


2021 ◽  
Author(s):  
Tomoko Tanaka ◽  
Shinobu Hirai ◽  
Hiroyuki Manabe ◽  
Kentaro Endo ◽  
Hiroko Shimbo ◽  
...  

Aging involves a decline in physiology which is a natural event in all living organisms. An accumulation of DNA damage contributes to the progression of aging. DNA is continually damaged by exogenous sources and endogenous sources. If the DNA repair pathway operates normally, DNA damage is not life threatening. However, impairments of the DNA repair pathway may result in an accumulation of DNA damage, which has a harmful effect on health and causes an onset of pathology. RP58, a zinc-finger transcriptional repressor, plays a critical role in cerebral cortex formation. Recently, it has been reported that the expression level of RP58 decreases in the aged human cortex. Furthermore, the role of RP58 in DNA damage is inferred by the involvement of DNMT3, which acts as a co-repressor for RP58, in DNA damage. Therefore, RP58 may play a crucial role in the DNA damage associated with aging. In the present study, we investigated the role of RP58 in aging. We used RP58 hetero-knockout and wild-type mice in adolescence, adulthood, or old age. We performed immunohistochemistry to determine whether microglia and DNA damage markers responded to the decline in RP58 levels. Furthermore, we performed an object location test to measure cognitive function, which decline with age. We found that the wild-type mice showed an increase in single-stranded DNA and gamma-H2AX foci. These results indicate an increase in DNA damage or dysfunction of DNA repair mechanisms in the hippocampus as age-related changes. Furthermore, we found that, with advancing age, both the wild-type and hetero-knockout mice showed an impairment of spatial memory for the object and increase in reactive microglia in the hippocampus. However, the RP58 hetero-knockout mice showed these symptoms earlier than the wild-type mice did. These results suggest that a decline in RP58 level may lead to the progression of aging.


2020 ◽  
Author(s):  
Benjamin Ng ◽  
Anissa A. Widjaja ◽  
Sivakumar Viswanathan ◽  
Jinrui Dong ◽  
Sonia P. Chothani ◽  
...  

AbstractGenetic loss of function (LOF) in IL11RA infers IL11 signaling as important for fertility, fibrosis, inflammation and craniosynostosis. The impact of genetic LOF in IL11 has not been characterized. We generated IL11-knockout (Il11-/-) mice, which are born in normal Mendelian ratios, have normal hematological profiles and are protected from bleomycin-induced lung fibro-inflammation. Noticeably, baseline IL6 levels in the lungs of Il11-/- mice are lower than those of wild-type mice and are not induced by bleomycin damage, placing IL11 upstream of IL6. Lung fibroblasts from Il11-/- mice are resistant to pro-fibrotic stimulation and show evidence of reduced autocrine IL11 activity. Il11-/- female mice are infertile. Unlike Il11ra1-/- mice, Il11-/- mice do not have a craniosynostosis-like phenotype and exhibit mildly reduced body weights. These data highlight similarities and differences between LOF in IL11 or IL11RA while establishing further the role of IL11 signaling in fibrosis and stromal inflammation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuanbo Wu ◽  
Changlong An ◽  
Xiaogao Jin ◽  
Zhaoyong Hu ◽  
Yanlin Wang

AbstractCirculating cells have a pathogenic role in the development of hypertensive nephropathy. However, how these cells infiltrate into the kidney are not fully elucidated. In this study, we investigated the role of CXCR6 in deoxycorticosterone acetate (DOCA)/salt-induced inflammation and fibrosis of the kidney. Following uninephrectomy, wild-type and CXCR6 knockout mice were treated with DOCA/salt for 3 weeks. Blood pressure was similar between wild-type and CXCR6 knockout mice at baseline and after treatment with DOCA/salt. Wild-type mice develop significant kidney injury, proteinuria, and kidney fibrosis after three weeks of DOCA/salt treatment. CXCR6 deficiency ameliorated kidney injury, proteinuria, and kidney fibrosis following treatment with DOCA/salt. Moreover, CXCR6 deficiency inhibited accumulation of bone marrow–derived fibroblasts and myofibroblasts in the kidney following treatment with DOCA/salt. Furthermore, CXCR6 deficiency markedly reduced the number of macrophages and T cells in the kidney after DOCA/salt treatment. In summary, our results identify a critical role of CXCR6 in the development of inflammation and fibrosis of the kidney in salt-sensitive hypertension.


2013 ◽  
Vol 454 (1) ◽  
pp. 133-145 ◽  
Author(s):  
Satomi Nadanaka ◽  
Shoji Kagiyama ◽  
Hiroshi Kitagawa

The gene products of two members of the EXT (exostosin) gene family, EXT1 and EXT2, function together as a polymerase in the biosynthesis of heparan sulfate. EXTL2 (EXT-like 2), one of the three EXTL genes in the human genome that are homologous to EXT1 and EXT2, encodes an N-acetylhexosaminyltransferase. We have demonstrated that EXTL2 terminates chain elongation of GAGs (glycosaminoglycans), and thereby regulates GAG biosynthesis. The abnormal GAG biosynthesis caused by loss of EXTL2 had no effect on normal development or normal adult homoeostasis. Therefore we examined the role of EXTL2 in CCl4 (carbon tetrachloride)-induced liver failure, a model of liver disease. On the fifth day after CCl4 administration, the liver/body weight ratio was significantly smaller for EXTL2-knockout mice than for wild-type mice. Consistent with this observation, hepatocyte proliferation following CCl4 treatment was lower in EXTL2-knockout mice than in wild-type mice. EXTL2-knockout mice experienced less HGF (hepatocyte growth factor)-mediated signalling than wild-type mice specifically because GAG synthesis was altered in these mutant mice. In addition, GAG synthesis in hepatic stellate cells was up-regulated during liver repair in EXTL2-knockout mice. Taken together, the results of the present study indicated that EXTL2-mediated regulation of GAG synthesis was important to the tissue regeneration processes that follow liver injury.


2008 ◽  
Vol 294 (4) ◽  
pp. H1793-H1803 ◽  
Author(s):  
Kimberly P. Gannon ◽  
Lauren G. VanLandingham ◽  
Nikki L. Jernigan ◽  
Samira C. Grifoni ◽  
Gina Hamilton ◽  
...  

Recent studies from our laboratory demonstrated the importance of mechanosensitive epithelial Na+ channel (ENaC) proteins in pressure-induced constriction in renal and cerebral arteries. ENaC proteins are closely related to acid-sensing ion channel 2 (ASIC2), a protein known to be required for normal mechanotransduction in certain sensory neurons. However, the role of the ASIC2 protein in pressure-induced constriction has never been addressed. The goal of the current study was to investigate the role of ASIC2 proteins in pressure-induced, or myogenic, constriction in the mouse middle cerebral arteries (MCAs) from ASIC2 wild-type (+/+), heterozygous (+/−), and null (−/−) mice. Constrictor responses to KCl (20–80 mM) and phenylephrine (10−7–10−4 M) were not different among groups. However, vasoconstrictor responses to increases in intraluminal pressure (15–90 mmHg) were impaired in MCAs from ASIC2−/− and +/− mice. At 60 and 90 mmHg, MCAs from ASIC2+/+ mice generated 13.7 ± 2.1% and 15.8 ± 2.0% tone and ASIC2−/− mice generated 7.4 ± 2.8% and 12.5 ± 2.4% tone, respectively. Surprisingly, MCAs from ASIC2+/− mice generated 1.2 ± 2.2% and 3.9 ± 1.8% tone at 60 and 90 mmHg. The reason underlying the total loss of myogenic tone in the ASIC2+/− is not clear, although the loss of mechanosensitive β- and γ-ENaC proteins may be a contributing factor. These results demonstrate that normal ASIC2 expression is required for normal pressure-induced constriction in the MCA. Furthermore, ASIC2 may be involved in establishing the basal level of myogenic tone.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 457-457
Author(s):  
Tamisha Y. Vaughan-Whitley ◽  
Hikaru Nishio ◽  
Barry Imhoff ◽  
Zhengqi Wang ◽  
Silvia T. Bunting ◽  
...  

Abstract Macrophages are responsible for protecting the body against foreign invaders. We have been studying the role of Grb2-associated binding proteins (Gabs) in macrophage biology. In mice, Gabs are adaptor proteins that include three family members (Gab1, Gab2, and Gab3) that play critical regulatory roles in modulating cytokine receptor signaling. Gab2 knockout mice have no developmental defects but have impaired allergic responses, osteoclast defects, altered mast cell development, and altered hematopoiesis. Gab3 knockout mice have no defined phenotypes alone and although highly expressed in macrophages, a functional role was not found despite considerable focus on this cell type. Therefore, we set out to determine the combined role of Gab2 and Gab3 to determine whether they performed redundant functions not observable in single knockout mice. To analyze regulation of macrophage cytokine production, a Gab2/3 deficient mouse model was generated on the C57BL/6 background. Bone Marrow Derived Macrophages (BMDM) were expanded from the bone marrow (BM) of wild-type (WT), Gab2 and Gab3 single knockout and Gab2/3 knockout mice and found to similarly co-express CD11b and F4/80. However, Gab2/3 knockout BM produced only 30% of wild-type BMDM numbers. Despite reductions in BMDM absolute numbers, isolated BMDM demonstrated significant induction of pro-inflammatory cytokines TNF-α and IL-12 and anti-inflammatory cytokine IL-10 mRNA at baseline. Interestingly, after LPS stimulation (100ng/ml) we detected much greater induction of TNF-α and IL-12 mRNA and protein expression. Interestingly, despite increased IL-10 mRNA induction in Gab2/3 knockout BMDM, no IL-10 protein expression could be detected by Luminex assay. No changes were observed in production of interferon or STAT1 activation in these BMDM. Studies have shown that rapamycin treatment of macrophages suppresses mTORC1 and subsequently reduces IL-10 production and promotes pro-inflammatory cytokine production. Gab2 is known for its role in regulating the PI3K pathway through interactions with the p85 regulatory subunit of PI3K. Therefore, we also examined whether mTOR activation was effected by Gab2/3 deficiency causing altered cytokine expression. Deletion of Gab2/3 in BMDMs treated with LPS showed an inhibition of 4EBP1 phosphorylation and increased AKT phosphorylation. These results suggest that Gabs may play a critical role in modulating mTOR activation and potentially causing defects in protein translation that reflect in reduced IL-10 cytokine levels in Gab2/3 knockout cells. IL-10 has a critical immunoregulatory role that is dysregulated in patients with inflammatory bowel disease. IL-10 deficient mice develop colitis due to loss of mucosal immune tolerance. Strikingly, as early as two months of age in vivo 12/32 (37.5%) Gab2/3 knockout mice developed rectal prolapse and suffered from diarrhea within a six month period. Histological analysis of isolated colons using a scoring system confirmed spontaneous development of colitis in Gab2/3 knockout mice compared to no phenotypes observed in WT and single knockout controls. To determine whether the BM was directly involved in the disease, BM chimeras were generated using irradiated WT mice as recipients and Gab2/3 knockout mice as donors. Susceptible recipients receiving Gab2/3 knockout BM showed a more invasive colitis phenotype than the spontaneous disease and resulted in forced euthanization due to body weight decreases greater than 25%. Multiple ulcerations were present in most of the colon proximal region, with extensive epithelial damage, transmural inflammation, and in some mice adenocarcinoma. Notably, we did not observe adenocarcinoma in untransplanted Gab2/3 knockout mice, suggesting that epithelial deletion of Gab2/3 may suppress cancer whereas in the bone marrow chimera model, the epithelial cells are WT and can be transformed. Similar phenotypes were also observed in secondary transplant recipients. Lastly, treatment of Gab2/3 knockout mice with dextran-sodium-sulfate (DSS) induced rapid severe colitis that resulted in death of 80% and 40% of Gab2/3 knockout and WT mice respectively. Overall, these observations demonstrate a major redundant role for Gab2 and Gab3 in macrophage immune surveillance required for the prevention of colitis in mice. Disclosures No relevant conflicts of interest to declare.


1999 ◽  
Vol 67 (2) ◽  
pp. 972-975 ◽  
Author(s):  
Jeffery A. Hobden ◽  
Sharon Masinick-McClellan ◽  
Ronald P. Barrett ◽  
Kenneth S. Bark ◽  
Linda D. Hazlett

ABSTRACT In this study, the role of intercellular adhesion molecule 1 (ICAM-1) in the pathogenesis of Pseudomonas aeruginosakeratitis was examined by using inbred ICAM-1-deficient knockout mice. These mice had significantly less (P ≤ 0.02) ocular disease than wild-type mice, suggesting that ICAM-1 contributes to a more severe disease response following P. aeruginosainfection.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaowei Fei ◽  
Yeting He ◽  
Jia Chen ◽  
Weitao Man ◽  
Chen Chen ◽  
...  

Abstract Background Inflammation and apoptosis caused by intracerebral hemorrhage (ICH) are two important factors that affect patient prognosis and survival. Toll-like receptor 4 (TLR4) triggers activation of the inflammatory pathway, causing synthesis and release of inflammatory factors. The inflammatory environment also causes neuronal apoptosis. However, no studies have reported the role of TLR4 in inflammation and apoptosis. Methods We performed survival curve analysis and behavioral scores on TLR4 knockout mice and wild-type mice after inducing ICH. We used TLR4 knockout mice and wild-type mice to make ICH models with type VII collagenase and explored the link between TLR4 in inflammation and apoptosis. We used Western blot to detect the expression of apoptosis-related proteins, inflammatory factors, and their receptors at different time points after ICH induction. The effects of TLR4 on apoptosis were observed by TUNEL, Hoechst, and HE staining techniques. The association with TLR4 in inflammation and apoptosis was explored using IL-1β and TNF-α antagonists. Data conforming to a normal distribution are expressed as mean ± standard deviation. Grade and quantitative data were compared with rank sum test and t test between two groups. P < 0.05 was considered statistically significant. Results TLR4 knockout significantly increased the survival rate of ICH mice. The scores of TLR4 knockout mice were significantly lower than those of wild-type mice. We found that TLR4 knockout mice significantly inhibited apoptosis and the expression of inflammatory factors after the induction of ICH. The apoptosis of ICH-induced mice was significantly improved after injecting IL-1β and TNF-α antagonists. Moreover, the anti-apoptotic effect of the antagonist in wild-type mice is more pronounced. A single injection of the antagonist failed to improve apoptosis in TLR4 knockout mice. Conclusions We conclude that TLR4-induced inflammation after ICH promotes neuronal apoptosis. IL-1β and TNF-α antagonists attenuate this apoptotic effect. Therefore, targeting TLR4 in patients with clinical ICH may attenuate inflammatory response, thereby attenuating apoptosis and improving prognosis.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Yu T Zhao ◽  
Jianfeng Du ◽  
Thomas J Zhao ◽  
Hao Wang ◽  
Marshall Kadin ◽  
...  

Background: p38 regulated/activated protein kinase (PRAK) plays a crucial role in modulating cell death and survival. However, the role of PRAK in mediating cardiac dysfunction and metabolic disorders remains unclear. We examined the effects of deletion of PRAK on modulating cardiac function and insulin resistance in mice exposed to a high fat diet (HFD). Methods: Wild type and PRAK -/- mice at 8 weeks old were exposed to either chow food or HFD for a consecutive 16 weeks. Glucose tolerance test and insulin tolerance test were employed to assess insulin resistance. Echocardiography was employed to assess myocardial function. Western blot was used to determine the molecular signaling involved in phosphorylation of IRS-1, AMPKα, ERK-44/42, and irisin. Real time-PCR was used to assess the hypertrophic genes of the myocardium. Histological analysis was employed to assess the hypertrophic response, interstitial myocardial fibrosis, and apoptosis in the heart. Results: HFD induced metabolic stress is indicated by glucose intolerance and insulin intolerance. PRAK knockout aggravated insulin resistance, as indicated by glucose intolerance and insulin intolerance testing as compared to wild type littermates. As compared to wild type, hyperglycemia and hypercholesterolemia were manifested in PRAK-knockout mice following high fat diet intervention. High fat diet intervention displayed a decline in fractional shortening (FS) and ejection fraction (EF). However, deletion of PRAK exacerbated the decline in EF and FS as compared to wild type mice following HFD treatment. In addition, PRAK knockout mice enhanced the expression of myocardial hypertrophic genes including ANP, BNP, and βMHC in HFD treatment, which was also associated with an increase in cardiomyocyte size and interstitial fibrosis. Western blot indicated that deletion of PRAK induces decreases in phosphorylation of IRS-1, AMPKα, and ERK44/42 as compared to wild type controls. Conclusion: Our finding indicates that deletion of PRAK promoted myocardial dysfunction, cardiac remodeling, and metabolic disorders in response to HFD.


Sign in / Sign up

Export Citation Format

Share Document