Functionally-oriented composite layered materials with martensitic transformations

2022 ◽  
pp. 1-9
Author(s):  
P O Rusinov ◽  
Zh M Blednova ◽  
G V Kurapov

The studies carried out show that the task of ensuring the reliability and expanding the functionality of products operating under multifactorial effects (temperature, force, deformation) can be successfully solved by functionally oriented surface composite materials with thermoelastic martensitic transformations (TMT). The authors proposed the technology of layer-by-layer synthesis of functionally-oriented composite layered materials with TMT in argon environment, implemented on patented equipment in a single technological cycle. This technology determines not only the novelty, but also the economic feasibility of technical solutions. We also suggested step-by-step methods of thermal and thermomechanical treatment of composite layered materials with TMT, which contribute to the structure stabilization while decreasing residual stress. On the basis of complex X-ray diffraction and electron microscopic studies, we determined the structural parameters of High Velocity Oxy-Fuel (HVOF) materials obtained by HVOF with subsequent thermal and thermomechanical treatment and ceramic materials ZrO2-Y2O3-CeO2-Al2O3 stabilized with Al2O3 with subsequent heat treatment. We investigated the microhardness of surface high-entropy and ceramic materials. Tests for "friction-wear" and mechanical high-cycle fatigue of steels with a composite surface laminate showed decrease in the wear rate and increase in the cyclic durability.

Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1453
Author(s):  
Niusha Lasemi ◽  
Günther Rupprechter

The catalytic properties of nanoparticles depend on their size, shape and surface/defect structure, with the entire catalyst performance being governed by the corresponding distributions. Herein, we present two routes of mono- and bimetallic nanoparticle synthesis that enable control of the structural parameters, i.e., wet-chemical synthesis and laser ablation in liquid-phase. The latter is particularly suited to create defect-rich nanoparticles. Impregnation routes were applied to prepare Ni and NiCu nanoparticles, whereas nano- and femtosecond laser ablation in liquid-phase were employed to prepare Ni and NiAu nanoparticles. The effects of the Ni:Cu ratio in impregnation and of laser fluence and liquid-medium on laser ablation are discussed. The atomic structure and (surface) composition of the nanoparticles were characterized by electron microscopic (BF-TEM, DF-TEM, HRTEM) and spectroscopic/diffraction techniques (EDX, SAED, XPS, IR), complemented by theory (DFT). The chemically synthesized bimetallic NiCu nanoparticles initially had Cu-rich surfaces, which changed to Ni-rich upon reaction. For laser ablation, depending on conditions (fluence, type of liquid), highly defective, ordered, or core/shell-like nanoparticles were produced. The case studies highlight the specific benefits of each preparation method for catalyst synthesis and discuss the potential of nanoparticles produced by pulsed laser ablation for catalytic applications.


2017 ◽  
Vol 885 ◽  
pp. 165-170
Author(s):  
Erzsebet Nagy ◽  
Márton Benke ◽  
Árpád Kovács ◽  
Valéria Mertinger

The crystallographic orientation relations of phases forming during the martensitic transformation determine the properties of alloys. In TRIP/TWIP steels, the circumstances of thermomechanical treatment (e.g. temperature, deformation) define the forming of martensites of different origins. Due to the thermomechanical treatment, thermally induced martensite (εTH), strain induced martensite (εD) and α’ martensite phases are present in the samples besides the austenite. The proportion of martensites in the sample is defined by the parameters of treatment. The thermally and strain induced martensites which are simultaneously present in the alloy at room temperature can be differentiated by the orientation relations.The martensitic transformations were followed by different methods in FeMn alloys with different Cr content. The macroscopic crystallographic anisotropy was measured by X-ray diffraction method; the microscopic one was examined by EBSD. The cognition of phenomenon observed in the texture image in different scales helps determine the possible origin of martensites.


2016 ◽  
Vol 61 (3) ◽  
pp. 1459-1464
Author(s):  
P. Falkowski ◽  
K. Scisel

AbstractThe aim of the work was to develop a sacrificial paste suitable for securing channels during shaping of ceramic materials with internal structures via combination of tape casting and soft lithography. Poly(ethylene glycol) methyl ether and polyethylene glycols with different molecular weight were selected as a main components of a sacrificial paste due to their compatibility to UV curable dispersion. The research shows that sacrificial paste should be characterized by proper melting point. This goal was achieved by using a composition of PEG600 with 15wt.%PEG20000 and 10wt.% carbon. The invented sacrificial paste solidify beyond 27°C (melting point). After heating up to 80°C the viscosity of paste is low enough and easily fills the channels with diameter of 150-300μm. What is more, the operational time during free cooling from 80°C to solidification is around 8 minutes what gives enough time for application. Carbon was added as a modifier of rheological properties and as a black dye that helps in visual evaluation of a degree of filling channel. The first test proved that proposed method of preparation of ceramic samples with application of invented sacrificial paste is reliable and can be practically applied.


2014 ◽  
Vol 790-791 ◽  
pp. 503-508 ◽  
Author(s):  
Sumanta Samal ◽  
Sutanuka Mohanty ◽  
Ajit Kumar Misra ◽  
Krishanu Biswas ◽  
B. Govind

The present investigation reports mechanical properties of novel multicomponent TixCuyFe20Co20Ni20 high entropy alloys (HEAs) with different alloy chemistry (x/y = 1/3, 3/7, 3/5, 9/11, 1, 11/9 and 3/2). The alloy cylinders were prepared by vacuum arc melting-cum-suction casting route. The detailed electron microscopic observations reveal the presence of three different solid solution phases; FCC (a1) phase, FCC (a2) phase and BCC (b) phase for all the investigated alloys, whereas ultrafine eutectic between FCC (a1) phase, and Ti2 (Co, Ni) - type Laves phase has been observed for the HEAs with x/y = 9/11, 1, 11/9 and 3/2. Room temperature compression test of the suction cast cylinders with aspect ratio of 2/1 has been conducted to obtain mechanical properties of the HEAs. The optimum combination of strength (~ 1.88 GPa) and plasticity (~ 21 %) is obtained for x/y = 9/11; indicating simultaneous improvement of strength as well as plasticity of the novel HEAs. Fractographic analysis of the fractured surfaces reveals mixed mode of fracture for x/y = 1/3, 3/7 and 3/5, ductile mode for x/y = 9/11 and 1, whereas brittle mode of fracture for x/y = 11/9 and 3/2.


2020 ◽  
Vol 31 (4) ◽  
pp. 865-875 ◽  
Author(s):  
Behzad Najafian ◽  
Camilla Tøndel ◽  
Einar Svarstad ◽  
Marie-Claire Gubler ◽  
João-Paulo Oliveira ◽  
...  

BackgroundIn males with classic Fabry disease, the processes leading to the frequent outcome of ESKD are poorly understood. Defects in the gene encoding α-galactosidase A lead to accumulation of globotriaosylceramide (GL3) in various cell types. In the glomerular podocytes, accumulation of GL3 progresses with age. Of concern, podocytes are relatively resistant to enzyme replacement therapy and are poorly replicating, with little ability to compensate for cell loss.MethodsIn this study of 55 males (mean age 27 years) with classic Fabry disease genotype and/or phenotype, we performed unbiased quantitative morphometric electron microscopic studies of biopsied kidney samples from patients and seven living transplant donors (to serve as controls). We extracted clinical information from medical records and clinical trial databases.ResultsPodocyte GL3 volume fraction (proportion of podocyte cytoplasm occupied by GL3) increased with age up to about age 27, suggesting that increasing podocyte GL3 volume fraction beyond a threshold may compromise survival of these cells. GL3 accumulation was associated with podocyte injury and loss, as evidenced by increased foot process width (a generally accepted structural marker of podocyte stress and injury) and with decreased podocyte number density per glomerular volume. Worsening podocyte structural parameters (increasing podocyte GL3 volume fraction and foot process width) was also associated with increasing urinary protein excretion—a strong prognosticator of adverse renal outcomes in Fabry disease—as well as with decreasing GFR.ConclusionsGiven the known association between podocyte loss and irreversible FSGS and global glomerulosclerosis, this study points to an important role for podocyte injury and loss in the progression of Fabry nephropathy and indicates a need for therapeutic intervention before critical podocyte loss occurs.


2019 ◽  
Vol 298 ◽  
pp. 00019 ◽  
Author(s):  
Anna Churakova ◽  
Anna Yudahina ◽  
Elina Kayumova ◽  
Nikita Tolstov

Influence of thermomechanical treatment (deformation, thermal cycling treatment in the temperature range of martensitic transformations B2-B19’) on the TiNi alloys’ mechanical behaviour and fracture was studied. Different states were considered, they are initial coarse-grained (CG), ultrafine-grained (UFG) after ECAP (with a grain size of 200 nm), the state after ECAP and cold upsetting by 30% - UFG state with high dislocation density. It was shown that thermal cycling causes some increase in dislocation density, strength and microhardness in all the states. Thermal cycling of UFG alloys allows forming the states with non-equilibrium grain boundaries, with additional dislocations of “phase hardening”. The nature of the fracture was analysed in the TiNi alloy in various states.


Sign in / Sign up

Export Citation Format

Share Document