scholarly journals The study of the maximum shear stress of the composition of pyrophyllite - clay component – water at elevated temperatures

Author(s):  
V. Z. Abdrakhimov

A sharp decrease in the ultimate shear stress in the range of 20‒80 °C is observed when obtaining samples from the clay component without descendents. This contributes to the appearance of cracks and defects in the samples. The use of pyrophyllite in ceramic masses in obtaining samples ensures a gradual decrease in the ultimate shear stress Pm in the range of 20‒80 °C. It is shown that to improve the drying properties of the samples, the composition of pyrophyllite ‒ clay ‒ water is more homogeneous than the composition of clay ‒ water. Analysis of the Pm of the samples under the conditions of hot forming showed that it is not so much the dependence Pm = f(t) that takes on special importance, but the dependence Pm = f(W, t), where t ― the temperature; W ― the humidity. Ill. 1. Ref. 8. Tab. 2.

Author(s):  
Vladimir Abdrakhimov

When obtaining ceramic bricks only from low-melting clay with the number of plasticity less than 12 without the use of thinners, there is a sharp drop in the limiting shear stress in the temperature range of 20-80oC, which contributes to the appearance of cracks and deformation curvatures of products. The use of nanotechnogenic raw materials as a thinner does not contribute to a sharp drop in the ultimate shear stress of the semi-finished brick in the temperature range of 20-80oC, eliminates the appearance of cracks and increases the physical and mechanical performance of the finished product. Studies have shown that in order to improve the drying properties of the ceramic mass, the system «nanotechnogenic raw materials-fusible clay-water» is more homogeneous in relation to the system «clay-water». The analysis of the ultimate shear stress in hot forming conditions showed that the function of dependence of plastic strength on molding humidity PM =f (W,t) than the function of dependence of plastic strength on temperature PM =f(t) acquires special importance in this case.


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Yansong Tan ◽  
Xin Li ◽  
Yunhui Mei ◽  
Gang Chen ◽  
Xu Chen

A series of dwell-fatigue tests were conducted on nanosilver sintered lap shear joint at elevated temperatures from 125 °C to 325 °C. The effects of temperature and loading conditions on dwell-fatigue behavior of nanosilver sintered lap shear joint were systematically studied. With higher temperature and longer dwell time, creep played a more important part in dwell-fatigue tests. Creep strain accumulated during maximum shear stress hold was found partly recovered by the subsequent cyclic unloading. Both the fracture mode and silver particle growth pattern were characterized by X-ray tomography system and scanning electron microscope (SEM). The mean shear strain rate γ˙m synthesized the effects of various factors, such as temperature, shear stress amplitude, mean shear stress, and dwell time, by which the fatigue and dwell-fatigue life of nanosilver sintered lap shear joint could be well predicted within a factor of two.


Author(s):  
Jianhang Chen ◽  
Hongbao Zhao ◽  
Fulian He ◽  
Junwen Zhang ◽  
Kangming Tao

AbstractNumerical simulation is a useful tool in investigating the loading performance of rock bolts. The cable structural elements (cableSELs) in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues. In this study, the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model. Furthermore, the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs. Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts. Based on the modified cableSELs, the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied. The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently. With the bolt diameter increasing, the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour. Moreover, after the rock bolt was loaded, the position where the maximum shear stress occurred was variable. Specifically, with the continuous loading, it shifted from the rock bolt loaded end to the other end.


Author(s):  
Basant Singh Sikarwar ◽  
K. Muralidhar ◽  
Sameer Khandekar

Clusters of liquid drops growing and moving on physically or chemically textured lyophobic surfaces are encountered in drop-wise mode of vapor condensation. As opposed to film-wise condensation, drops permit a large heat transfer coefficient and are hence attractive. However, the temporal sustainability of drop formation on a surface is a challenging task, primarily because the sliding drops eventually leach away the lyophobicity promoter layer. Assuming that there is no chemical reaction between the promoter and the condensing liquid, the wall shear stress (viscous resistance) is the prime parameter for controlling physical leaching. The dynamic shape of individual droplets, as they form and roll/slide on such surfaces, determines the effective shear interaction at the wall. Given a shear stress distribution of an individual droplet, the net effect of droplet ensemble can be determined using the time averaged population density during condensation. In this paper, we solve the Navier-Stokes and the energy equation in three-dimensions on an unstructured tetrahedral grid representing the computational domain corresponding to an isolated pendant droplet sliding on a lyophobic substrate. We correlate the droplet Reynolds number (Re = 10–500, based on droplet hydraulic diameter), contact angle and shape of droplet with wall shear stress and heat transfer coefficient. The simulations presented here are for Prandtl Number (Pr) = 5.8. We see that, both Poiseuille number (Po) and Nusselt number (Nu), increase with increasing the droplet Reynolds number. The maximum shear stress as well as heat transfer occurs at the droplet corners. For a given droplet volume, increasing contact angle decreases the transport coefficients.


2013 ◽  
Vol 184 (4-5) ◽  
pp. 299-306 ◽  
Author(s):  
Richard J. Lisle

AbstractThe assumption is widely made that slip on faults occurs in the direction of maximum resolved shear stress, an assumption known as the Wallace-Bott hypothesis. This assumption is used to theoretically predict slip directions from known in situ stresses, and also as the basis of palaeostress inversion from fault-slip data. This paper examines different situations in relation to the appropriateness of this assumption. Firstly, it is shown that the magnitude of the shear stress resolved within a plane is a function with a poorly defined maximum direction, so that shear stress values greater than 90% of the maximum occur within a wide angular range (± 26°) degrees. The situation of simultaneous movement on pairs of faults requires slip on each fault to be parallel to their mutual line of intersection. However, the resolved shear stresses arising from a homogeneous state of stress do not accord with such a slip arrangement except in the case of pairs of perpendicular faults. Where fault surfaces are non-planar, the directions of resolved shear stress in general give, according to the Wallace-Bott hypothesis, a set of slip directions of rigid fault blocks, which is generally kinematically incompatible. Finally, a simple model of a corrugated fault suggests that any anisotropy of the shear strength of the fault such as that arising from fault surface topography, can lead to a significant angular difference between the directions of maximum shear stress and the slip direction.These findings have relevance to the design of procedures used to estimate palaeostresses and the amount of data required for this type of analysis.


2013 ◽  
Vol 791-793 ◽  
pp. 362-365
Author(s):  
Li Yang ◽  
Ju Li Li ◽  
Jing Guo Ge ◽  
Meng Li ◽  
Nan Ji

Thermal cycling of a unit Sn0.7Cu solder was studied based on the steady-state creep constitutive equation and Matlab software. The results show that there is a steady-state cycle for the thermal cycling of unit Sn0.7Cu eutectic solder. In steady-state thermal cycling, the shear stress is increased with the increase of temperature. There is a stage of stress relaxation during high temperature. A liner relationship between maximum shear stress and maximum shear strain is observed during thermal cycling. The metastable cycle number is declined greatly with the increase of maximum shear strain.


2020 ◽  
pp. 1-3
Author(s):  
Abu Bakr El-Bediwi ◽  
◽  
Doaa Al- Ragae ◽  
Thoraya El-Helaly ◽  
◽  
...  

Aging in normal saliva for different interval times make a change in internal structure (Formed phases and started base line) of Sliver- Palladium (Ag-Pd) dental alloy. Also aging in saliva for one, two and three weeks decreased Vickers hardness value, calculated maximum shear stress (τm) and roughness parameters for Sliver- Palladium alloy. Microbiological studies show the Candida spp. stuck on Sliver- Palladium alloy surface and their growth dependent on aging times.


2019 ◽  
Vol 17 (1) ◽  
pp. 73 ◽  
Author(s):  
Masaki Yano ◽  
Takuya Yamamoto ◽  
Yasunori Okano ◽  
Toshiyuki Kanamori ◽  
Mashiro Kino–oka

In a suspension culture of iPS cells, the shear stress generated during mixing is expected to promote differentiation of induced pluripotent stem (iPS) cells. The stress on the cells can be controlled by rotational rate and shape of impeller. However, it is difficult to optimize these operative parameters by experiments. Therefore, we have developed a numerical model to obtain the average and the maximum shear stress in two kinds of stirred tanks and an orbital shaking cylindrical container. The present results showed that the shear stress strongly depended on the type of mixing and lesser extent on the shape of the impeller. The average shear stress is larger in the shaking mode than that in the stirring mode. In contrast, the maximum shear stress is much smaller in the shaking than the stirring. These results suggest that stirring and shaking should be selectively used depending on the application


Sign in / Sign up

Export Citation Format

Share Document