Evaluation of the parameters of the porous structure and permeability of monofraction ceramics

Author(s):  
Yu. N. Kryuchkov

A method for assessing the structure parameters of porous ceramic materials by porosity and particle size is presented. Based on it, a physically more rigorous than the well-known Cozeny formula is obtained, a formula for determining the average (hydraulic) radius of the capillaries of permeable materials. The presented results of the calculation of the average radius of the capillaries of porous ceramics based on electrocorundum according to the obtained formula are in better agreement with experimental data than the calculations by the Cozeny formula.

2013 ◽  
Vol 804 ◽  
pp. 52-56
Author(s):  
Yan Ping Feng ◽  
Zhi Wen Qiu ◽  
Xiao Bin Ma ◽  
Lei Zhao ◽  
Xin Chao Chen ◽  
...  

In order to lay raw materials foundation for increasing the performance of insulating brick with the low grade quartz sand along the Yangtze River, the quartz porous ceramic materials was researched in this paper. The results show the porosity of the porous quartz ceramics decreased with an increase in the sintering temperature. The pore is like the bowl shape, and the pore is closed pore, which is help to improve the heat insulation property of quartz porous ceramics. The CaSiO4 is produced in the ceramics after sintering processing. The shape is better, and the microstructure is circular and symmetrical pore, which is help to improve the mechanical property of quartz porous ceramics.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Hui Wang ◽  
Jine Shang ◽  
Xuesong Yang

In this paper, three kinds of iron tailings samples were selected as the main research object, and an iron tailings porous ceramic material was prepared by adding pore forming agent. The crystal structure, surface morphology and microstructure of the composites were observed by XRD and SEM. Finally, the effects of porous ceramics on water pH, conductivity and surface tension were studied. By adjusting the recipe, the final finding of a better formula for firing: iron tailings (1 #): cellulose = 15: 2.57. The interior of the ceramic formed a denser pore structure, and the pores were more uniform, the aperture was more consistent. And the pH value of the water can be weakly alkaline, the conductivity increased by 58.75% and the surface tension decreased by 0.37%. The results provide the basis for the application of the tailings porous ceramic materials in the biological field.


Author(s):  
N. V. Buchilin ◽  
G. Yu. Lyulyukina ◽  
N. M. Varrik

The results of studies of sintering of spinel porous ceramics using aluminum and magnesium oxides as initial components without sintering additives are presented. It is shown that the optimal burning temperature range for the production of materials with an open-cellular porous structure is 1700‒1730 °C. It has been established that the preliminary heat treatment of oxides significantly affects the mechanical characteristics of materials. Materials were obtained with an interconnected porosity of up to 85 % and a compressive strength of up to 1,0 MPa. Ill. 6. Ref. 25.


2016 ◽  
Vol 721 ◽  
pp. 159-163 ◽  
Author(s):  
Dace Krivane ◽  
Kaspars Bondars ◽  
Jekaterina Savikina ◽  
Aleksandrs Korjakins

The paper discusses the EU directive and the rules for disposing of sewage treatment plant (STP) sludge and storage conditions that have been adopted, it does not fully cover possible use of STP sludge for industrial purposes. One of the ways of reducing amount of sludge is treatment of this waste for further application as additive or raw material for producing building materials. Manufacturing of porous ceramic materials from local raw materials (e.g. clay) using water treatment sludge and sawdust as combustible filler is possible. In order to reduce the sludge humidity, freezing method was used, where sludge give away more loose water in the process of thawing. It was proved during the research that sewage treatment plant sludge can be used to make porous ceramic materials.


2020 ◽  
Vol 67 (1) ◽  
pp. 148-155
Author(s):  
Anatoliy V. Fedotov ◽  
Viktor S. Grigoriev ◽  
Dmitriy A. Kovalev ◽  
Andrey A. Kovalev

To speed up the wastewater treatment under aerobic conditions and to optimize the processes of anaerobic wastewater treatment in digesters, immobilization technologies of microorganisms and enzymes on solid carriers are used. Ceramic carriers based on aluminosilicates and alumina are one of the promising inorganic biomass carriers. (Research purpose) To study the structure of porous ceramic biomass carriers for anaerobic processing of organic waste and evaluate the prospects for their use. (Materials and methods) The substrate for anaerobic digestion was a mixture of sediments of the primary and secondary sewage sumps of the Lyubertsy treatment facilities. K-65 cattle feed was used to ensure the constancy of the composition of organic substances in substrates as a cosubstrate. The authors used the method of low-temperature nitrogen adsorption of Bruner-Emmett-Teller to study the pore structure and specific surface of solid carriers on a specific surface analyzer Quntachrome Autosorb-1. (Results and discussion) The main characteristics (specific surface, volume of micro- and mesopores, predominant pore radius, water absorption and others) of chamotte foam lightweight and highly porous corundum ceramics were determined. It was revealed that ceramic materials with a developed surface and electrically conductive material provided an increase in biogas yield by 3.8-3.9 percent with an increase in methane content by an average of 5 percent. (Conclusions) The results of anaerobic digestion showed a positive effect of both a conductive carrier and highly porous ceramic materials on the process of anaerobic bioconversion of organic waste into biogas. It is advisable to expand experimental studies on the use of a conductive carrier with a developed surface based on highly porous ceramics.


2021 ◽  
Vol 11 (13) ◽  
pp. 6056
Author(s):  
Egle Rosson ◽  
Acacio Rincón Rincón Romero ◽  
Denis Badocco ◽  
Federico Zorzi ◽  
Paolo Sgarbossa ◽  
...  

Spent fluorescent lamps (SFL) are classified as hazardous materials in the European Waste Catalogue, which includes residues from various hi-tech devices. The most common end-of-life treatment of SFL consists in the recovery of rare earth elements from the phosphor powders, with associated problems in the management of the glass residues, which are usually landfilled. This study involves the manufacturing of porous ceramics from both the coarse glass-rich fraction and the phosphor-enriched fraction of spent fluorescent lamps. These porous materials, realizing the immobilization of Rare Earth Elements (REEs) within a glass matrix, are suggested for application in buildings as thermal and acoustic insulators. The proposed process is characterized by: (i) alkaline activation (2.5 M or 1 M NaOH aqueous solution); (ii) pre-curing at 75 °C; (iii) the addition of a surfactant (Triton X-100) for foaming at high-speed stirring; (iv) curing at 45 °C; (v) viscous flow sintering at 700 °C. All the final porous ceramics present a limited metal leaching and, in particular, the coarse glass fraction activated with 2.5 M NaOH solution leads to materials comparable to commercial glass foams in terms of mechanical properties.


2016 ◽  
Vol 61 (1) ◽  
pp. 411-418 ◽  
Author(s):  
A.J. Dolata

The goal of this work is the description of phenomena occurring during centrifugal infiltration of porous ceramic materials by liquid Al alloy. In this method, the pressure required to infiltration of liquid metal into pores of ceramic is generated by centrifugal force. From the beginning it was assumed that the porous ceramic material will create reinforcement layer in specific area of the casting. The forces that influence on the liquid metal during mould centrifugation and heat exchange between ceramic preform and metal alloy within the area of the front of infiltration were considered in the analysis. The paper presents also selected experiment results.


2009 ◽  
Vol 13 (3) ◽  
pp. 153-163 ◽  
Author(s):  
Kannan Chidambaram ◽  
Tamilporai Packirisamy

The advantages of using ceramics in advanced heat engines include increased fuel efficiency due to higher engine operating temperatures, more compact designs with lower capacity cooling system. Future internal combustion engines will be characterized by near zero emission level along with low specific fuel consumption. Homogenous combustion which realized inside the engine cylinder has the potential of providing near zero emission level with better fuel economy. However, the accomplishment of homogeneous combustion depends on the air flow structure inside the combustion chamber, fuel injection conditions and turbulence as well as ignition conditions. Various methods and procedures are being adopted to establish the homogeneous combustion inside the engine cylinder. In recent days, porous ceramic materials are being introduced inside the combustion chamber to achieve the homogeneous combustion. This paper investigates the desirable structures, types, and properties of such porous ceramic materials and their positive influence on the combustion process.


2004 ◽  
Vol 10 (S02) ◽  
pp. 742-743
Author(s):  
James H Steele

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


Sign in / Sign up

Export Citation Format

Share Document