scholarly journals An efficiency assessment analysis of a modified gravitational Pelton-wheel turbine

2009 ◽  
Vol 20 (4) ◽  
pp. 19-29
Author(s):  
Raj Kumar Kapooria

A Pelton-wheel impulse turbine is a hydro mechanical energy conversion device which converts gravitational energy of elevated water into mechanical work. This mechanical work is converted into electrical energy by means of running an electrical generator. The kinetic energy of the Water-jet is directed tangentially at the buckets of a Pelton-wheel. The Water-jet strikes on each bucket’s convex profile splitter and get split into two halves. Each half is turned backwards, almost through 180° relative to the bucket on a horizontal plane. Practically this angle may vary between 165° to 170°. Normally all the jet energy is used in propelling the rim of the bucket wheel. Invariably some jet water misses the bucket and passes onto the tail race without doing any useful work. This hydro device is a good source of hydro-electrical energy conversion for a high water head. The present work in this research paper deals with some advanced modifications in the conventional Pelton-wheel so that it can be used for low-head and heavy-discharge applications. Both kinetic and potential energy of the water source is consumed by the runner wheel. Considerable gravitational effect of the water jet is exploited by means of some modifications in a conventional Pelton-wheel. A comparatively heavy generator can be run by this modified Pelton-wheel turbine under low-head and heavy-discharge conditions. The modified features provide enough promising opportunities to use this turbine for Mini and Micro hydro power plants.

Author(s):  
Richardo Barry Astro ◽  
Hamsa Doa ◽  
Hendro Hendro

ABSTRAKPenelitian ini bertujuan untuk mengetahui prinsip dasar dan sistem kerja pembangkit listrik tenaga mikrohidro (PLTMH) dari sudut pandang fisika sebagai upaya penyediaan dan pengembangan sumber belajar kontekstual. Penelitian ini dilaksanakan menggunakan metode studi literatur, observasi, dan wawancara. Hasilnya ditemukan bahwa PLTMH memiliki tiga komponen utama yakni air sebagai sumber energi, turbin, dan generator. Skema konversi energi pada PLTMH yang menggunakan head adalah sebagai berikut: 1) energi potensial air dari reservoir diubah menjadi energi kinetik pada pipa pesat, 2) energi kinetik air diubah menjadi energi mekanik oleh turbin air, 3) energi mekanik diubah menjadi energi listrik oleh generator. Turbin air berdasarkan prinsip kerja dibagi atas turbin impuls dan turbin reaksi. Turbin impuls memanfaatkan perubahan momentum air sebelum dan setelah menabrak sudu turbin, sedangkan turbin reaksi memanfaatkan perbedaan tekanan pada permukaan sudu. Generator bekerja berdasarkan prinsip induksi elektromagnetik. Ketika rotor generator yang terkopel pada turbin berputar, kumparan konduktor akan memotong garis medan magnet sehingga timbul tegangan induksi. Kata kunci: pembangkit listrik tenaga mikrohidro; konversi energi; turbin, generator. ABSTRACTThe research aims to determine the fundamental principles and working systems of Microhydro power plants from a physical standpoint as an effort to provide and develop contextual learning resources. This study was conducted using literature, observation and interview methods. The results found that PLTMH had three main components i.e. water as energy source, turbine, and generator. The energy conversion scheme on PLTMH that uses the head is as follows: 1) The potential energy of water from the reservoir is converted into kinetic energy on the rapid pipeline, 2) water kinetic energy converted into mechanical energy by water turbine, 3) changed mechanical energy into electrical energy by generators. The water turbine based on the working principle is divided into impulse turbines and reaction turbines. The impulse turbine utilizes a change in water momentum before and after crashing the turbine's sudu, while the reaction turbine utilizes pressure differences on the surface of the Sudu. The generators work based on electromagnetic induction principles. When the rotor generator is attached to the turbine spinning, the conductor coil will cut off the magnetic field line so that the induction voltage arises. Keywords: microhydro power plant; energy conversion; turbine; generator.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Dwi Irawan ◽  
Eko Nugroho ◽  
Eko Widiyanto

A micro hydro power plant, or commonly known as a turbine is a power plant that utilizes the potential energy of water to be converted into mechanical energy which is then converted into electrical energy using a generator. The Pelton turbine is an extension of the impulse turbine with a split some blades dividing the jet into two equal beaks which are reversed sideways at the turbine wheel. This study aims to determine the effect of the number of nozzles to output power, efficiency, and electric power produced. In this study, a Pelton type water turbine was applied to a water source flowing from the mountains with a head of 26 m and 0.003167 m3/s water discharge. This study used 3 variations of the number of nozzles (single, double, and triple nozzle) with 9 mm outer diameter of nozzle and 35 mm nozzle length. The results of the research conducted, the turbine power is 419.53 watts, the turbine efficiency is 52%, and the generator power is 360 Watts for triple nozzle variation. The turbine power obtained is 388.83 Watts, the turbine efficiency is 48%, and the generator power is 234 Watts for double nozzle variation. And the power obtained is 367.47 Watts, the turbine efficiency is 45%, and the generator power is 175 Watts for single nozzle variations.


2014 ◽  
Vol 698 ◽  
pp. 785-789
Author(s):  
Yana Panova ◽  
Vladimir Derbenev ◽  
Anastasiya Zhdanovich

This article is devoted to the principles of constructing the decision support information system at the hydroelectric power plants. It’s assumed that the fuzzy sets theory will be used for the representation of the information about the aggregates operating condition parameters. The paper reflects the advantages of such an approach. The calculations were done for the equipment of the low-head (Novosibirskaya HPP, Hydro Power Plant) and high-head (Sayano–Shushenskaya HPP) power plants. The results obtained are intended for solving the HPPs operational control problems.


2020 ◽  
Vol 2 (2) ◽  
pp. 30-38
Author(s):  
Susanto Ointu ◽  
Frengki Eka Putra Surusa ◽  
Muammar Zainuddin

Listrik merupakan kebutuhan yang sangat berperan penting bagi kehidupan manusia. Sehingga itu rencananya diwilayah terpencil tersebut akan diadakan pembangkit listrik yang ramah lingkungan, dan juga termasuk energi terbarukan. Kecamatan Pinogu terdapat bendungan untuk bisa dimanfaatkan sebagai sumber Pembangkit Listrik Tenaga Mikrohidro (PLTMH). Tujuan dari penelitian ini adalah untuk mengetahui seberapa besar potensi air untuk menghasilkan energi listrik pada bendungan yang dapat menunjang elektrifikasi di Desa Pinogu Kecamatan Pinogu Kabupaten Bone Bolango. Metode yang digunakan dalam menghitung debit air pada bendungan tersebut dengan metode apung dan pengukuran menggunakan stopwatch. Berdasarkan hasil pengukuran pada lokasi bendungan di Desa Pinogu Kecamatan Kabupaten Bone Bolango, menghasilkan potensi air dengan debit air maksimal sebesar 1,67 m3/detik, dengan tinggi terjun 3,57 meter, maka total daya maksimal yang diperoleh adalah 29,83 KW dan dapat melayani 99 rumah dengan daya masing-masing rumah sebesar 300 Watt.Kata Kunci — studi kelayakan, PLTM, Desa Pinogu.Electricity is a necessity that plays an important role in human life. So that the plan is in the remote region will be held power plants that are environmentally friendly, and also include renewable energy. Pinogu Subdistrict has a dam to be used as a source of Micro Hydro Power Plant (PLTMH). The purpose of this study is to find out how much the potential of water to produce electrical energy in dams that can support electrification in Pinogu Village, Pinogu District, Bone Bolango Regency. The method used in calculating the flow of water in the dam with the floating method and measurement using a stopwatch. Based on the results of measurements at the location of the dam in Pinogu Village, District of Bone Bolango District, it produces water potential with a maximum water discharge of 1.67 m3 / sec, with a waterfall height of 3.57 meters, then the total maximum power obtained is 29.83 KW and can serves 99 homes with a power of 300 Watt each.Keywords - feasibility study, PLTM, Pinogu Village.


2021 ◽  
Vol 11 (16) ◽  
pp. 7449
Author(s):  
Bo-Gun Koo ◽  
Dong-Jin Shin ◽  
Dong-Hwan Lim ◽  
Min-Soo Kim ◽  
In-Sung Kim ◽  
...  

We investigated the harvesting performance of a double piezoelectric generator, which was embedded into the engine block of a small passenger car. The resonance frequency is approximately between 37 and 52 Hz, where the cantilever showed maximum displacement. In reality, the cantilever has a vibrating characteristic, which dramatically reduces displacement, even when the operating frequency deviates slightly from the resonance frequency. To acquire a large mechanical energy-to-electrical energy conversion, a multiple-piezoelectric generator was employed to absorb the energy even when the vibration switched from a resonance to a non-resonance frequency. In this study, a variable mass box was designed and installed in the engine block of a car. The variable mass box consisted of the serial connection of two masses with different weights. The operating frequency deviated from a resonance to a non-resonance frequency within a few hertz (3~4 Hz); the reduction in vibration was lower, leading to a significant acquisition of the resulting power. This is due to the variable matching of the generator, realized by the action of dual mass. This type of generator was installed in the engine block and produced up to 0.038 and 0.357 mW when the engine was operating at 2200 and 3200 rpm, respectively.


Author(s):  
Yevgen Honcharov ◽  
Nataliya Kriukova ◽  
Vladislav Markov ◽  
Igor Polyakov

The article deals with the actual problems of using the energy released by the human body. The question arises how much energy can the human body generate? Is it possible to use this energy for domestic and industrial needs? In the 18th and 19th centuries, the first scientific works on this topic appeared. It turned out that the charge carriers in the proteins of a living organism are protons and electrons, which, together with the electron-hole conduction system, create a single conductivity inherent only in a living organism. The electrical activity of the brain is assessed by voltage pulses with an amplitude of 500 μV of various frequencies from 0.5 to 55 Hz. It is impossible to receive pulses with such a frequency and such an amplitude from only ionic-type charge carriers. Electrochemical current sources are inertial; therefore, this fact can be direct evidence of the presence of electronic movement of charge carriers in the brain and the nervous system as a whole. It is quite realistic to use the thermal energy of the human body. Currently, the central building of the Stockholm railway station has been turned into a kind of experimental testing ground. Every day about 250 thousand people pass through the station building, who emit up to 25 MW of thermal energy. Most of it in the form of heated air is collected in ventilation and through heat exchangers energy is transferred to heat water in the heating system of another building. According to rough estimates, the efficiency of such a system can save up to 25% of the energy spent on heating the building. Inside a person, electric currents of various frequencies are generated in 7 biological power plants: in the heart, in the brain and in the five sense organs. All the electricity that is generated inside the human body is absorbed by its own tissues. Not a single electron produced inside a living organism leaves the human body, and does not pass into the environment, but is absorbed by the skin. This is the reason for the closure of the human electrical system. The body itself absorbs all the electricity that it previously produced. The energy generated by the human body is divided into mechanical, thermal, and electrical. The thermal energy of the human body can be used most effectively. Mechanical energy can also be used, but with much less efficiency. The electrical energy of the human body at this stage in the development of science and technology is practically impossible to use. Its use is likely to become real in the very distant future


Author(s):  
Hira Singh Sachdev ◽  
Ashok Kumar Akella

<p>Small hydro systems play a major role in meeting power requirements of remote, isolated, hilly areas in a decentralized manner by tapping water streams, rivulets and canals of small discharge. Small hydroelectric system captures the energy in flowing water and converts it to electricity.</p>Of all the non-conventional renewable energy sources, small hydro stands first as it is more resourceful, reduces system  losses, environment friendly, non-consumptive and source is renewable due to their enormous advantages over large hydro and other power plants, lot of small hydro-power plants have come up across the world to meet the ever increasing demand of electrical energy. Lowering the high initial cost of the small hydro-power plants and its popularization is today’s challenges. This paper describes basic techniques design of the small hydro-power development.


2021 ◽  
Vol 13 (17) ◽  
pp. 9803
Author(s):  
Ji Woo Nam ◽  
Yong Jun Sung ◽  
Seong Wook Cho

The InWave wave energy converter (WEC), which is three-tether WEC type, absorbs wave energy via moored cylindrical buoys with three ropes connected to a terrestrial power take-off (PTO) through a subsea pulley. In this study, a simulation study was conducted to select a suitable PTO when designing a three-tether WEC. The mechanical PTO transfers energy from the buoy to the generator using a gearbox, whereas the hydraulic PTO uses a hydraulic pump, an accumulator, and a hydraulic motor to convert mechanical energy into electrical energy. The hydraulic PTO has a lower energy conversion efficiency than that of the mechanical PTO owing to losses resulting from pipe friction and the individual efficiencies of the hydraulic pumps and motors. However, the efficiencies mentioned above are not the efficiency of the whole system. The efficiency of the whole system should be analyzed considering the tension of the rope and the efficiency of the generator. In this study, the energy conversion efficiencies of the InWave WEC installed the mechanical and hydraulic PTO devices are compared, and their behaviors are analyzed through numerical simulations. The mechanics of mechanical and hydraulic PTO applied to InWave are mathematically expressed, and the issues of the elements constituting the PTO are explained. Finally, factors to consider for PTO selection are presented.


Author(s):  
Enrico Bischur ◽  
Norbert Schwesinger

Plane PVDF-foil modules have been developed and successfully tested that generate electrical energy out of the mechanical energy of dynamic weight forces. For instance electrical energy can be generated, if people or vehicles pass such modules on a ground area. This method is based on the piezoelectric effect of stretched PVDF-foil. The energy conversion of the generator modules was investigated with regard to the remanent polarization of the PVDF material. Furthermore, the influence of the PVDF layer system was investigated on the energy conversion. The measured values are compared with values calculated analytically. It was found that a higher remanent polarization of the PVDF material lead to a better energy conversion. Even more electrical energy could be generated, if more PVDF layers were stacked above each other. If the values were normalized on the PVDF volume used in each case, the values of the electric energy were not constant. However, a maximum was observed at n = 21 layers. The measured energy values were higher than calculated values of the longitudinal piezoelectric effect. This could be caused by a simultaneous expansion of the PVDF film in a direction vertical to the direction of the mechanical load. These generator modules could be used as new energy source for emergency lighting, alarm systems, traffic sensors, etc.


2018 ◽  
Vol 17 (3) ◽  
pp. 393
Author(s):  
I Putu Juliana ◽  
Antonius Ibi Weking ◽  
Lie Jasa

The dependence of power plants on energy sources such as diesel, natural gas and coal is almost 75%, encouraging the development of renewable energy in an effort to meet the electricity supply. One of them is the micro hydro power plant by utilizing the potential of existing water. The working principle of PLTMH is to change the potential energy of water into electrical energy. In this final project has been designed modeling of micro hydro power plant by using screw turbine (Archimedes Screw). The turbine used resembles a drill bit, with a diameter of a turbine of 26 cm, a screw width of 10 cm, and an amount of 10 pieces of blade. Measurements made on the modeling of micro hydro power plants include: water discharge, turbine rotation, generator rotation, voltage, current, torque and generator output power and efficiency. The parameters are measured by changing the water fall on the turbine from the position of the turbine head angle 00, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800  and 900 . The result of measurement that has been done on the parameters of micro hydro power plant modeling, obtained the highest measurement result at the corner of turbine head 400. The output power generated is 10.92 watts, torque is 0.60 Nm and efficiency of 14%. The results obtained are still low because the turbine rotation is less able to rotate the generator, where the generator torque is greater than the torque in the turbine. This is influenced by the small water discharges in the modeling of this micro hydro power plant.


Sign in / Sign up

Export Citation Format

Share Document