scholarly journals Biology and Captive Breeding of the Amazonian Milk Frog, Trachycephalus resinifictrix (Goeldi 1907)

2015 ◽  
Vol 22 (2) ◽  
pp. 68-75
Author(s):  
Fabien Mignet

Although the Amazonian Milk Frog (Trachycephalus resinifictrix) is commonly bred in captivity in zoological institutions worldwide, very little information regarding these undertakings has been published. Here, I report my experience with the successful breeding of T. resinifictrix at the Touroparc Zoo. I highlight some fundamental biological traits in order to fulfill the requirements for captive breeding and to ensure the general welfare of these frogs. The aim is to provide guidelines that may be used by zoos, aquariums, and other facilities as well as private contributions to conservation breeding programs for endangered anurans with requirements similar to those of T. resinifictrix. In general, this species is easy to keep in captivity. Larvae are easy to produce and raise with very low mortality rates. They usually metamorphose at six to ten weeks. However, newly metamorphosed frogs are fragile and require more attention. Several pathogens are known to affect the health of amphibians, and stress can play an important role in immune function.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Katherine A. Farquharson ◽  
Carolyn J. Hogg ◽  
Catherine E. Grueber

AbstractConservation breeding programs such as zoos play a major role in preventing extinction, but their sustainability may be impeded by neutral and adaptive population genetic change. These changes are difficult to detect for a single species or context, and impact global conservation efforts. We analyse pedigree data from 15 vertebrate species – over 30,000 individuals – to examine offspring survival over generations of captive breeding. Even accounting for inbreeding, we find that the impacts of increasing generations in captivity are highly variable across species, with some showing substantial increases or decreases in offspring survival over generations. We find further differences between dam and sire effects in first- versus multi-generational analysis. Crucially, our multispecies analysis reveals that responses to captivity could not be predicted from species’ evolutionary (phylogenetic) relationships. Even under best-practice captive management, generational fitness changes that cannot be explained by known processes (such as inbreeding depression), are occurring.


2021 ◽  
Author(s):  
Pauline ML van Leeuwen ◽  
Albrecht I. Schulte-Hostedde ◽  
Christine Fournier-Chambrillon ◽  
Carmen M. Aranda ◽  
Laurie Berthomieu ◽  
...  

Abstract Host’s fitness can be affected by its genotype and gut microbiota, defined as the microbes living in the host’s intestinal tract. This study explored how the genetic diversity of the host influences its bacterial communities in the context of captive breeding programs, for the critically endangered European mink (Mustela lutreola). As stated by the ecosystem on a leash model, loss of host genetic diversity may lead to changes in immunomodulation and will therefore induce modifications of the gut microbiota. We investigated variation in the gut bacteria through 16S rRNA metabarcoding, related to the genetic diversity of European mink held in captivity in two breeding centers representing separate breeding stocks originating from the western and eastern populations. The genetic diversity of the host was assessed through diversity analysis of the adaptive MHC class I and II genes as well as neutral microsatellite markers. Results indicate lower diversity in neutral and MHC class I genes for the western population, and the opposite for MHC class II. A lower MHC class II gene variability led to an increase in microbial phylogenetic diversity and in abundance depending on the presence of specific MHC-II motifs. Those results seem to be linked to management practices that differs between the two programs, especially the number of generations in captivity. Long term Ex situ conservation practices can thus modulate gut microbial communities, that might potentially have consequences on the survival of reintroduced animals. We suggest strategies to foster genetic diversity in captive breeding program to mitigate the effects of genetic drift on those small, isolated populations.


2010 ◽  
Vol 1 (2) ◽  
pp. 189-210 ◽  
Author(s):  
Jesse D'Elia

Abstract Birds have been bred in captivity since the dawn of civilization. In the nineteenth century, breeding rare and exotic animals for the menageries of royalty and aristocrats transitioned to the formation of public zoological gardens and natural history museums. With industrialization and human population expansion, some bird species became rare or disappeared entirely. Once the magnitude of the destructive forces of humans became evident, concerted efforts were initiated to restore depleted bird populations by using, among other techniques, captive breeding. In this article, I explore the evolution of avian conservation breeding programs and evaluate how this historical review informs our outlook for addressing the current extinction crisis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robin Rabier ◽  
Loïc Lesobre ◽  
Alexandre Robert

AbstractAlthough captive breeding programs are valuable for conservation, they have been shown to be associated with genetic changes, such as adaptation to captivity or inbreeding. In addition, reproductive performance is strongly age-dependent in most animal species. These mechanisms that potentially impact reproduction have often been studied separately, while their interactions have rarely been addressed. In this study, using a large dataset of nine male and female reproductive parameters measured for 12,295 captive houbara bustards (Chlamydotis undulata undulata) over 24 years, we investigated the relative and interactive effects of age, inbreeding and number of generations in captivity on reproduction. We clearly identified (1) senescence patterns in all parameters studied; (2) negative effects of inbreeding on sperm characteristics, display behavior, egg weight, egg volume and hatching probability; and (3) changes in phenotypic values for seven parameters according to number of generations in captivity. However, the effect sizes associated with age were substantially greater than those associated with inbreeding and number of generations in captivity. Beyond the independent effects of these three factors on reproductive parameters, the results highlighted their interactive effects and thus the importance of integrating them in the design of genetic management plans for conservation breeding programs.


2017 ◽  
Vol 65 (6) ◽  
pp. 347 ◽  
Author(s):  
J. Thomas ◽  
K. Handasyde ◽  
M. L. Parrott ◽  
P. Temple-Smith

The platypus nesting burrow, where females lay eggs and rear their young, has not been well studied. We have little knowledge of its structure and the process of construction. This study aimed to investigate nesting behaviour of breeding females and to describe the structure and features of the burrow. We used infrared cameras to record behaviour of captive breeding female platypuses during the nest-building period, over nine years. After the young had become independent, we excavated 11 nesting burrows and mapped their structural features. Nesting behaviour was observed 7–15 days after mating and was an indicator of gravidity. Females invested an average of 8 h 18 min over 3.5 nights, gathering and transporting wet nesting material to their burrows. The nests were composed mostly of native mat-rush leaves. Nesting burrows varied in length from 3.2 to 10.4 m. They contained narrow tunnels, ‘pugs’ of backfilled earth, dead ends, multiple entrances and a chamber at the end that contained the nest. Appropriate nesting sites and nesting materials must be provided to female platypuses for captive breeding programs to succeed.


2019 ◽  
Vol 30 (5) ◽  
pp. 1196-1204 ◽  
Author(s):  
Jenna Day ◽  
Rebecca M Gooley ◽  
Carolyn J Hogg ◽  
Katherine Belov ◽  
Camilla M Whittington ◽  
...  

AbstractMate choice contributes to driving evolutionary processes when animals choose breeding partners that confer genetic advantages to offspring, such as increased immunocompetence. The major histocompatibility complex (MHC) is an important group of immunological molecules, as MHC antigens bind and present foreign peptides to T-cells. Recent studies suggest that mates may be selected based on their MHC profile, leading to an association between an individual’s MHC diversity and their breeding success. In conservation, it may be important to consider mate choice in captive breeding programs, as this mechanism may improve reproductive rates. We investigated the reproductive success of Tasmanian devils in a group housing facility to determine whether increased MHC-based heterozygosity led individuals to secure more mating partners and produce more offspring. We also compared the breeding success of captive females to a wild devil population. MHC diversity was quantified using 12 MHC-linked microsatellite markers, including 11 previously characterized markers and one newly identified marker. Our analyses revealed that there was no relationship between MHC-linked heterozygosity and reproductive success either in captivity or the wild. The results of this study suggest that, for Tasmanian devils, MHC-based heterozygosity does not produce greater breeding success and that no specific changes to current captive management strategies are required with respect to preserving MHC diversity.


2019 ◽  
Vol 12 (9) ◽  
pp. 1506-1513 ◽  
Author(s):  
Medania Purwaningrum ◽  
Herjuno Ari Nugroho ◽  
Machmud Asvan ◽  
Karyanti Karyanti ◽  
Bertha Alviyanto ◽  
...  

Background and Aim: Many avian species are considered sexually monomorphic. In monomorphic bird species, especially in young birds, sex is difficult to identify based on an analysis of their external morphology. Accurate sex identification is essential for avian captive breeding and evolutionary studies. Methods with varying degrees of invasiveness such as vent sexing, laparoscopic surgery, steroid sexing, and chromosome inspection (karyotyping) are used for sex identification in monomorphic birds. This study aimed to assess the utility of a non-invasive molecular marker for gender identification in a variety of captive monomorphic birds, as a strategy for conservation. Materials and Methods: DNA was isolated from feather samples from 52 individuals representing 16 species of 11 families indigenous to both Indonesia and elsewhere. We amplified the chromodomain helicase DNA-binding (CHD) gene using polymerase chain reaction with MP, NP, and PF primers to amplify introns with lengths that differ between the CHD-W and the CHD-Z genes, allowing sex discrimination because the W chromosome is exclusively present in females. Results: Molecular bird sexing confirmed 33 females and 19 males with 100% accuracy. We used sequencing followed by alignment on one protected bird species (Probosciger aterrimus). Conclusion: Sex identification may be accomplished noninvasively in birds, because males only have Z sex chromosomes, whereas females have both Z and W chromosomes. Consequently, the presence of a W-unique DNA sequence identifies an individual as female. Sexing of birds is vital for scientific research, and to increase the success rate of conservation breeding programs.


2021 ◽  
pp. 24-27
Author(s):  
Jay Redbond

The Nguru spiny pygmy chameleon (Rhampholeon acuminatus) is endemic to the Nguru mountains in Tanzania. It is assessed as Critically Endangered and is collected from the wild for the pet trade. An ex-situ population of this species was recently established at The Wild Planet Trust, Paignton Zoo, in the hope of learning more about the husbandry and biology of this species. We report on the captive husbandry of adults and the successful breeding, hatching and rearing of juveniles. Females carried four eggs but laid them in pairs. When eggs were incubated at 19.2-22.8 °C, hatchlings emerged roughly 180 days after laying. The hatchlings had a total length of about 30 mm and weighed 0.2-0.3 g. To our knowledge, this is the first published account of captive breeding for this species. The husbandry methods described could be used to establish populations of this and other Rhampholeon species in captivity, which in turn would reduce the demand for wild caught (Rhampholeon), as well as inform future conservation breeding programmes for this species.


2013 ◽  
Vol 35 (2) ◽  
pp. 217 ◽  
Author(s):  
Hayley J. Stannard ◽  
Casey R. Borthwick ◽  
Oselyne Ong ◽  
Julie M. Old

This paper reports successful breeding by 4-year-old female red-tailed phascogales (Phascogale calura) and that they can survive until at least 5 years of age in captivity, whilst males can survive until at least 2 years of age in captivity. These findings have implications for captive breeding programs, providing evidence that older females can be successfully bred. In the longer term we hope these findings may aid conservation efforts of this endangered dasyurid.


Sign in / Sign up

Export Citation Format

Share Document