scholarly journals Sponge effect of aerated concrete on phosphorus adsorption-desorption from agricultural drainage water in rainfall

2020 ◽  
Vol 15 (No. 4) ◽  
pp. 220-227
Author(s):  
Jinquan Zhang ◽  
Weiguo Fu

In the initial stage of the rainfall, the nutrient element phosphorus (P) in the farmland, one of the most important factors causing agricultural non-point source pollution, flows into agriculture drainage ditches rapidly, and an instantaneous phosphorus peak value in the ditch water often occurs. Aerated concrete with high P adsorption properties was chosen as the experiment material in the laboratory to reduce the instantaneous P peak value in the drainage water in the initial stage of the rainfall. The three total P (TP) concentrations of the simulated drainage water (1.0, 2.0, and 3.0 mg/L) stood for three treatments were designed in the adsorption experiment; the same three TP concentrations of the simulated drainage water and the three TP concentrations of the simulated natural water (0.2, 0.3, and 0.4 mg/L) stood for nine treatments in the desorption experiment. The sponge effect of the aerated concrete on the P adsorption-desorption was explored by studying the dynamics of the P adsorption-desorption of the aerated concrete with an increase in the experiment’s time. The results showed the following details: (1) Both the adsorption rate and desorption rate of the aerated concrete decrease with an increase in the experiment’s time. The initial adsorption is dominant during the entire adsorption, as with the initial desorption during the entire desorption. (2) The adsorption capacity of the aerated concrete slightly decreases with the increase in the re-adsorption, whereas the desorption capacity of the aerated concrete significantly decreases with the increase in the re-desorption. Thus, the aerated concrete can be introduced into the agricultural drainage ditch to reduce the instantaneous P peak value in the drainage water in the initial stage of the rainfall, and potential further studies should explore the relationship between the different drainage water loads and the amount of the aerated concrete.

1992 ◽  
Vol 23 (1) ◽  
pp. 13-26 ◽  
Author(s):  
W. H. Hendershot ◽  
L. Mendes ◽  
H. Lalande ◽  
F. Courchesne ◽  
S. Savoie

In order to determine how water flowpath controls stream chemistry, we studied both soil and stream water during spring snowmelt, 1985. Soil solution concentrations of base cations were relatively constant over time indicating that cation exchange was controlling cation concentrations. Similarly SO4 adsorption-desorption or precipitation-dissolution reactions with the matrix were controlling its concentrations. On the other hand, NO3 appeared to be controlled by uptake by plants or microorganisms or by denitrification since their concentrations in the soil fell abruptly as snowmelt proceeded. Dissolved Al and pH varied vertically in the soil profile and their pattern in the stream indicated clearly the importance of water flowpath on stream chemistry. Although Al increased as pH decreased, the relationship does not appear to be controlled by gibbsite. The best fit of calculated dissolved inorganic Al was obtained using AlOHSO4 with a solubility less than that of pure crystalline jurbanite.


2021 ◽  
Vol 9 (6) ◽  
pp. 1331
Author(s):  
Arnaud Jéglot ◽  
Sebastian Reinhold Sørensen ◽  
Kirk M. Schnorr ◽  
Finn Plauborg ◽  
Lars Elsgaard

Denitrifying woodchip bioreactors (WBR), which aim to reduce nitrate (NO3−) pollution from agricultural drainage water, are less efficient when cold temperatures slow down the microbial transformation processes. Conducting bioaugmentation could potentially increase the NO3− removal efficiency during these specific periods. First, it is necessary to investigate denitrifying microbial populations in these facilities and understand their temperature responses. We hypothesized that seasonal changes and subsequent adaptations of microbial populations would allow for enrichment of cold-adapted denitrifying bacterial populations with potential use for bioaugmentation. Woodchip material was sampled from an operating WBR during spring, fall, and winter and used for enrichments of denitrifiers that were characterized by studies of metagenomics and temperature dependence of NO3− depletion. The successful enrichment of psychrotolerant denitrifiers was supported by the differences in temperature response, with the apparent domination of the phylum Proteobacteria and the genus Pseudomonas. The enrichments were found to have different microbiomes’ composition and they mainly differed with native woodchip microbiomes by a lower abundance of the genus Flavobacterium. Overall, the performance and composition of the enriched denitrifying population from the WBR microbiome indicated a potential for efficient NO3− removal at cold temperatures that could be stimulated by the addition of selected cold-adapted denitrifying bacteria.


2021 ◽  
Vol 2 (12(81)) ◽  
pp. 39-43
Author(s):  
M. Ibragimov ◽  
Y. Heydarova ◽  
A. Alizade ◽  
L. Ibragimova

This scientific article discusses the oral manifestations of diseases of the gastrointestinal tract. This problem is relevant both for dentists and family doctors. In medicine, for a long period of time, the relationship between diseases affecting the gastrointestinal tract and their symptoms manifested in the oral cavity has been considered. Many scientists and physicians have dealt with this problem, their several opinions are presented in this article. There is a hypothesis among researchers that the oral cavity is a mirror in which all human diseases can be visible. In the oral cavity, most of the alterations occurring in the organism are manifested, due to which, with an attentive attitude to oral manifestations, the disease can be detected already at the initial stage.


Author(s):  
Alheder Haled

The paper is devoted to determining the prospects for cooperation between Russia and the Syrian Arab Republic in various scenarios of military conflicts. In order to identify the relationship between the success of the country's foreign economic policy and the military conflicts waged on its territory, a study was conducted of such indicators of Syria as: the growth rate of the peace index and the GDP growth rate. A strong inverse correlation is revealed, which means that the level of political situation and peace in the state determines the efficiency of the economy. In view of this, various scenarios of the development of the military conflict in Syria have been studied: at the initial stage, at the stage of active hostilities, at the present stage of overcoming the crisis. The last stage involves four different scenarios for the development of a military conflict, including a local nature and a protracted nature with the involvement of other countries of the world. Options for developing cooperation between Russia and Syria have been identified for each scenario. Taking into account the assessment of the international political situation, the two most likely scenarios for further military events in Syria are identified, and the prospects for cooperation between Russia and Syria in these conditions are outlined.


2017 ◽  
Vol 33 (3) ◽  
pp. 369-378 ◽  
Author(s):  
Brett A Zimmerman ◽  
Amy L Kaleita

Abstract. Assessing the effectiveness of management strategies to reduce agricultural nutrient efflux is hampered by the lack of affordable, continuous monitoring systems. Generalized water quality monitoring is possible using electrical conductivity. However environmental conditions can influence the ionic ratios, resulting in misinterpretations of established electrical conductivity and ionic composition relationships. Here we characterize specific electrical conductivity (k25) of agricultural drainage waters to define these environmental conditions and dissolved constituents that contribute to k25. A field investigation revealed that the magnitude of measured k25 varied from 370 to 760 µS cm-1. Statistical analysis indicated that variability in k25 was not correlated with drainage water pH, temperature, nor flow rate. While k25 was not significantly different among drainage waters from growing and post-growing season, significant results were observed for different cropping systems. Soybean plots in rotation with corn had significantly lower conductivities than those of corn plots in rotation with soybeans, continuous corn plots, and prairie plots. In addition to evaluating k25 variability, regression analysis was used to estimate the concentration of major ions in solution from measured k25. Regression results indicated that HCO3-, Ca2+, NO3-, Mg2+, Cl-, Na2+, SO42- were the major drainage constituents contributing to the bulk electrical conductivity. Calculated ionic molal conductivities of these analytes suggests that HCO3-, Ca2+, NO3-, and Mg2+ account for approximately 97% of the bulk electrical conductivity. Keywords: Electrical conductivity, Salinity, Subsurface drainage, Total dissolved solids.


2002 ◽  
Vol 59 (2) ◽  
pp. 349-355 ◽  
Author(s):  
Alex Teixeira Andrade ◽  
Luiz Arnaldo Fernandes ◽  
Valdemar Faquin

Organic residue application is a low cost alternative to reduce the use of inorganic fertilizers and correctives. In order to study the effect of organic residues, limestone and gypsum application on phosphorus adsorption by lowland soils, four experiments were carried out. A Mesic Organosol (OY), a Melanic Gleysol (MG), a Haplic Gleysol (GX), and a Fluvic Neosol (RU) were used in a completely randomized design and factorial scheme (3 x 2), with five replicates: three soil amendment practices (limestone, gypsum and no corrective) and two levels of organic residue (with and without corral manure). Soil samples were incubated for 60 days, with and without organic residue incorporation. After this period, we applied the corrective and incubated the soil for 30 days, then P and basic fertilization (macro and micronutrients) were applied and the soil was incubated for additional 60 days. Equilibrium phosphorus, maximum phosphate adsorption capacity, pH, exchangeable Al and phosphorus-buffering index were measured. Organic residue and limestone application increased soil pH and reduced exchangeable Al, decreasing P adsorption. Gypsum application did not increase the pH but reduced exchangeable Al and P adsorption.


Sign in / Sign up

Export Citation Format

Share Document