scholarly journals Growth and yield response of spring wheat (Triticum aestivum L.) to inoculation with rhizobacteria

2011 ◽  
Vol 52 (No. 3) ◽  
pp. 111-118 ◽  
Author(s):  
A. Salantur ◽  
A. Ozturk ◽  
S. Akten

The growth and yield response of spring wheat to inoculation with foreign and local rhizobacteria of Erzurum (Turkey) origin was studied. At the first stage of the research, a greenhouse experiment was carried out with wheat cv. Kirik using 75 local bacterial strains isolated from the soil with 6 foreign bacteria, and a control. According to results of the greenhouse experiment 9 local strains were identified. At the second stage, the response of wheat cv. Kirik to 20 treatments (9 local strains, 6 foreign bacteria, 4 levels of N, and a control) was investigated in Erzurum field conditions. Seventeen strains had significant positive effects on tiller number per plant, 47 strains on plant height, one strain on dry matter yield, and 28 strains on plant protein content in the greenhouse experiment. Inoculation with certain rhizobacteria clearly benefited growth and increased the grain and N-yield of field grown wheat. The effects of local strains were observed to be in general superior to those of foreign strains. Inoculation with the local Strain No. 19, 73, and 82 increased total biomass by 18.7, 18.1, and 19.9%; grain yield by 18.6, 17.7, and 18.0%; total N-yield by 27.5, 24.3 and 26.0%, respectively, as compared to control. In conclusion, Strain No. 19, 73, and 82 can be a suitable biofertilizer for spring wheat cultivation in areas with similar conditions as in Erzurum. Inoculation with these strains may lead both to increases in wheat yield and savings of nitrogen fertilizer.

2003 ◽  
Vol 54 (10) ◽  
pp. 957 ◽  
Author(s):  
A. G. Condon ◽  
F. Giunta

Transient waterlogging during winter and spring reduces wheat yield in many parts of southern Australia. Yield reductions from waterlogging are associated with reduced production and survival of tillers, fewer and smaller fertile tillers, and smaller grain size. Under favourable conditions, wheats that have the tiller-inhibition ('tin') gene produce a lower total number of tillers but a higher proportion of large, productive tillers and larger grains than wheats without this gene. These characteristics of restricted-tillering wheat may contribute to improved yield under transient waterlogging. We compared the growth and yield of the commercial variety Bodallin and 2 Bodallin backcross derivatives containing the 'tin' gene in 8 field trials grown on shallow, duplex soils in 1995 and 1996 at 3 locations in the south-west of Western Australia. Trials were sown at standard (1995) and standard and high (1996) seeding rates. Trial-mean yield ranged from 0.5 to 4.7 t/ha, depending on the occurrence and severity of waterlogging before anthesis and of soil water deficit before and after anthesis. Grain yield of the restricted-tillering (RT) lines averaged only c. 80% of Bodallin. At all sites and seeding rates the RT lines had fewer spikes per m2 (45% fewer, on average) but averaged 44% more grains per spike. In 1996 only, grain weight of the RT lines was 6% greater than of Bodallin. There was no evidence that the relative yield of the RT lines was greater at waterlogged sites than at other sites. Waterlogging reduced the number of fertile spikes of RT lines and of Bodallin to the same relative extent and differences in grains per spike and grain size had little effect on relative yields. Even though harvest index of the RT lines was slightly elevated in some environments, biomass production of the RT lines was low in all environments. We conclude that wheats with the 'tin' gene are unlikely to have a yield advantage under transient waterlogging unless their biomass production can match that of more freely tillering wheats.


2017 ◽  
Vol 11 ◽  
Author(s):  
Raghunath Subedi ◽  
Chiara Bertora ◽  
Laura Zavattaro ◽  
Carlo Grignani

Biochar (BC) from biomass waste pyrolysis has been widely studied due to its ability to increase carbon (C) sequestration, reduce greenhouse gas (GHG) emissions, and enhance both crop growth and soil quality. This review summarizes the current knowledge of BC production, characterization, and types, with a focus on its positive effects on crop yield and soil properties versus the unintended risks associated with these effects. Biochar-amended soils enhance crop growth and yield via several mechanisms: expanded plant nutrient and water availability through increased use efficiencies, improved soil quality, and suppression of soil and plant diseases. Yield response to BC has been shown to be more evident in acidic and sandy soils than in alkaline and fine-textured soils. Biochar composition and properties vary considerably with feedstock and pyrolysis conditions so much that its concentrations of toxic compounds and heavy metals can negatively impact crop and soil health. Consequently, more small-scale and greenhouse-sited studies are in process to investigate the role of BC/soil/crop types on crop growth, and the mechanisms by which they influence crop yield. Similarly, a need exists for long-term, field-scale studies on the effects (beneficial and harmful) of BC amendment on soil health and crop yields, so that production guidelines and quality standards may be developed for BCs derived from a range of feedstocks.


1995 ◽  
Vol 120 (6) ◽  
pp. 956-963 ◽  
Author(s):  
David W. Wolfe ◽  
Daniel T. Topoleski ◽  
Norman A. Gundersheim ◽  
Betsy A. Ingall

A 3-year field study conducted on an Eel silt loam soil (Aquic Udifluvent) compared cabbage (Brussica oleracea L. capitata group), cucumber (Cucumis sativus L.), snap bean (Phaseolus vulgaris L.), and sweet corn (Zea mays L.) for their growth and yield response to an artificially compacted soil layer beginning at about the 10-cm depth. Slower growing cabbage seedlings in compacted plots were more subject to flea beetle damage than the uncompacted controls. Prolonged flooding after heavy rainfall events in compacted areas had a more adverse effect on cabbage and snap bean than on cucumber or sweet corn. Sweet corn showed almost no growth reduction in one of the three years (1993) when relatively high fertilizer rates were applied and leaf nitrogen deficiencies in compacted plots were prevented. Maturity of cabbage, snap bean, and cucumber was delayed, and the average reduction in total marketable yield in (direct-seeded) compacted plots was 73%, 49%, 41%, and 34% for cabbage, snap bean, cucumber and sweet corn, respectively. Yield reduction in transplanted cabbage (evaluated in 1993 only) was 29%. In a controlled environment greenhouse experiment using the same soil type and similar compaction treatment as the field study, compaction caused a reduction in total biomass production of 30% and 14% in snap bean and cabbage, respectively, while cucumber and sweet corn showed no significant response. The growth reductions of snap bean and cabbage in the greenhouse could not be attributed to compaction effects on soil water status, leaf turgor, nutrient deficiency, or net CO, assimilation rate of individual leaves. Root growth of sweet corn was least restricted by the compacted soil layer. The contrast between our field and greenhouse results indicates that the magnitude of yield response to compaction in the field was often associated with species sensitivity to secondary effects of compaction, such as prolonged flooding after rainfall events, reduced nutrient availability or uptake, and prolonged or more severe pest pressure.


1993 ◽  
Vol 7 (4) ◽  
pp. 890-893 ◽  
Author(s):  
Kenneth J. Kirkland

The effect of duration of wild oat competition on spring wheat yield and growth was determined in time-of-removal experiments conducted over a three year study period in Saskatchewan, Canada. Failure to remove wild oat reduced wheat yield 28 and 39% at wild oat populations of 64 and 188 plants per m2, respectively. Wheat yield was not reduced by wild oat densities of 64 or 118 plants per m2until the six- and seven-leaf stage of wild oat, respectively. Removing wild oat at 64 plants per m2before the seven-leaf stage and 118 plants per m2before the five-leaf stage did not increase wheat culm or fresh weight production.


Weed Science ◽  
1986 ◽  
Vol 34 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Harry L. Carlson ◽  
James E. Hill

Field experiments were conducted to determine the effect of nitrogen fertilization on competition between wild oat (Avena fatuaL. # AVEFA) and spring wheat (Triticum aestivum‘Anza’). Nitrogen fertilizer treatments were applied over several wild oat-wheat density combinations. Wheat grain yield in wild oat-infested plots generally declined with fertilization while the density of wild oat panicles increased. Apparently, in competition with wheat, wild oat was better able to utilize the added nitrogen and thus gained a competitive advantage over the wheat. The increased competitiveness of wild oat resulted in reduced crop yields. Under the conditions of these experiments, nitrogen fertilization resulted in positive wheat yield response only when the wild oat plant density was below 1.6 percent of the total plant density.


2001 ◽  
Vol 81 (1) ◽  
pp. 93-102 ◽  
Author(s):  
M J Garand ◽  
R R Simard ◽  
A F MacKenzie ◽  
C. Hamel

Although there is a potential to substantially reduce N fertiliser inputs by cropping spring cereals with an interseeded legume, the agronomic value and the nitrate catch-crop effect associated with this practice are not documented under the conditions of eastern Canada. This 3-yr study estimated N credits and non-N nutritional effects for interseeded clover (Trifolium pratense L. 'Arlington') in spring wheat production (Triticum aestivum L. 'Algot') and assessed fall and spring nitrate (NO3−) in soil. The soil is a St. Urbain clay (Orthic Gleysol) located in the St. Lawrence lowlands. Ammonium nitrate (NH4NO3) was applied at 0, 40, 80, 120 and 160 kg N ha-1 with or without red clover as a companion crop. Clover was incorporated as a green manure crop in mid-November. Clover significantly (P = 0.05) influenced wheat yield response to N fertilisation for 2 of the 3 yr. Clover did not reduce wheat grain yield through competition between the two plant species. Higher wheat yields with clover were attributed to N supplied by clover through mineralisation of residues incorporated in the soil the previous fall. Nitrogen fertiliser replacement value of clover was approximately 80 kg N ha-1 for 1994 and 1995. Clover occasionally increased NO3−-N measured in the soil profile in late fall and in spring. Interseeded red clover may provide most of the N needs of a companion spring wheat crop in fine-textured gleysolic soils, but is an inefficient N catch-crop. Key words: N credits, non-N nutritional effect, N catch-crop


1994 ◽  
Vol 34 (5) ◽  
pp. 681 ◽  
Author(s):  
NA Maier ◽  
G Barth ◽  
M Bennell

The effect of annual applications of nitrogen (N), potassium (K) and phosphorus (P) on the yield, growth and nutrient status of Ixodia daisy (Ixodia achillaeioides ssp. alata) grown on a silty loam, was investigated in field experiments conducted during 1989-91 in the Mount Lofty Ranges, South Australia. The experimental design was a randomised block with 3 replications. The N and K treatments, at annual rates up to 200 kg N/ha and 150 kg K/ha, were applied as 2 equal side-dressings. The P treatments, at rates up to 200 kg/ha, were broadcast as 1 annual application. To assess plant nutrient status we sampled the fifth leaf below the growing terminal of 50 stems in October and whole stems at harvest. As rate of applied N increased, there was a significant (P<0.05) increase in total biomass harvested, number of 3040 and 41-50 cm stems, total number of marketable stems, plant height and width. Annual N application rates of 75-110 kg/ha were required for 95% of maximum biomass yield and number of marketable stems. The application of K did not significantly (P>0.05) affect yield or plant growth. First and second order interactions between N, K and year were not significant. Plant growth and yield responses to P applied as superphosphate were inconsistent and the interaction between P and year was not significant (P>0.05). Coefficients of determination (r2) for relationships between N, K and P concentrations in the fifth leaf samples v. total biomass yield and total stem number, were in the range 0.13-0.52 for the combined 1990 and 1991 data. Based on sensitivity, reproducibility and occurrence of the Piper-Steenbjerg effect, we concluded that N, K or P concentrations in the fifth leaf sampled in October, or in whole stems at harvest, were not reliable indicators of the nutrient status of Ixodia daisy. The application of N and P did not affect the concentration of minor or micronutrients in the fifth leaf. In contrast, the application of K increased calcium (Ca), magnesium (Mg) and sulfur (S) concentrations by 14.3, 33.3 and 12.2%, respectively. For a high density planting (13,000 plants) we estimated that for N, P and K, 69.4, 6.2 and 83.2 kg/ha, respectively, are removed in marketable stems. The application of P increased extractable-P concentrations in the surface (0-15 cm) soil from 22 to 73 mg/kg. We suggest that for surface (0-15 cm) soils, extractable-P and extractable-K concentrations in the ranges 15-95 and 210-260 mg/kg, respectively, are adequate and indicate that a yield response to the application of these nutrients in fertiliser may not occur.


Weed Science ◽  
1988 ◽  
Vol 36 (5) ◽  
pp. 594-598 ◽  
Author(s):  
Frank L. Young

The effect of Russian thistle density and duration of interference on spring wheat was investigated in two 3-yr field studies. In the density study, the best fit regression equation predicted a loss in spring wheat yield of 0.5, 0.5, and 0.6% in 1983, 1984, and 1985, respectively, for each percent of the total biomass contributed by Russian thistle. In 1985, when rainfall was 46% below normal, the highest weed density produced greater than 70% of the total plant biomass and reduced yields more than 50%. In contrast, in 1984 when rainfall was 65% above normal, the highest weed density produced less than 20% of the total plant biomass and reduced yields 11%. In the duration study, the predicted yield loss was 2.3 and 0.7% for 1983 and 1984, respectively, for each week of interference. In 1985, yield was not significantly reduced until after 6 weeks of interference. In both studies, spikes/m of row had the highest correlation with yield and were affected the most by weed interference.


2020 ◽  
Vol 41 (1) ◽  
Author(s):  
Joy Geraldine Adiele ◽  
Antonius G. T. Schut ◽  
Kodjovi S. Ezui ◽  
Pieter Pypers ◽  
Ken E. Giller

AbstractFertilizers are required to improve productivity of cassava and meet the increasing demand for cassava as food, feed, or raw material for processing industries. Our objective was to develop nutrition indices for N, P, and K to provide quantitative insight in the dynamics of nutrient demand and uptake of cassava. On-farm experiments were conducted at six locations in Nigeria from 2016 to 2018, across the major cassava growing agro-ecologies of West Africa. Nitrogen, P, and K were applied at different rates. Uptake of nutrients was measured in leaves, stems, and storage roots at 4, 8, and 12 or 14 months after planting (MAP) and used to construct NPK dilution curves and nutrition indices. About 67, 61, and 52% of total N, P, and K were taken up at 4 MAP, with a maximum uptake rate of 0.21, 0.03, and 0.12 g/m2/d for N, P, and K, respectively. Nutrient concentrations in stems and storage roots declined gradually, in contrast to concentrations in the leaves that fluctuated within narrow ranges. Dilution curves and nutrition indices for N, P, and K were established for the first time in cassava. Dilution curves of N, P, and K in the crop for the highest NPK application treatment were described as Nc = 82DM−0.61, Pc = 7.4DM−0.54, and Kc = 43DM−0.54, when total biomass was between 5 and 57 t/ha dry matter (DM). The nutrition indices were linearly related to relative crop biomass. Insight into the nutrient uptake and dilution patterns during the growth cycle can help to understand the temporal nutrient demands of cassava and identify sustainable management practices. Initial ample supply of N and P and moderate K, with extra K top-dress during the second growth phase, will benefit cassava growth and yield. Furthermore, such information provides a basis to develop a dynamic model to simulate nutrient-limited growth of cassava.


Sign in / Sign up

Export Citation Format

Share Document